ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions
- URL: http://arxiv.org/abs/2310.01331v2
- Date: Tue, 14 Nov 2023 06:02:15 GMT
- Title: ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions
- Authors: Jeongeon Park, Bryan Min, Xiaojuan Ma, Juho Kim
- Abstract summary: We present ChoiceMates, a system that enables conversations with a dynamic set of LLM-powered agents.
Agents, as opinionated personas, flexibly join the conversation, not only providing responses but also conversing among themselves to elicit each agent's preferences.
Our study (n=36) comparing ChoiceMates to conventional web search and single-agent showed that ChoiceMates was more helpful in discovering, diving deeper, and managing information compared to Web with higher confidence.
- Score: 58.71970923420007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unfamiliar decisions -- decisions where people lack adequate domain knowledge
or expertise -- specifically increase the complexity and uncertainty of the
process of searching for, understanding, and making decisions with online
information. Through our formative study (n=14), we observed users' challenges
in accessing diverse perspectives, identifying relevant information, and
deciding the right moment to make the final decision. We present ChoiceMates, a
system that enables conversations with a dynamic set of LLM-powered agents for
a holistic domain understanding and efficient discovery and management of
information to make decisions. Agents, as opinionated personas, flexibly join
the conversation, not only providing responses but also conversing among
themselves to elicit each agent's preferences. Our between-subjects study
(n=36) comparing ChoiceMates to conventional web search and single-agent showed
that ChoiceMates was more helpful in discovering, diving deeper, and managing
information compared to Web with higher confidence. We also describe how
participants utilized multi-agent conversations in their decision-making
process.
Related papers
- RoundTable: Investigating Group Decision-Making Mechanism in Multi-Agent Collaboration [15.2119694237099]
This study investigates the efficacy of Multi-Agent Systems in eliciting cross-agent communication and enhancing collective intelligence.
By applying different voting rules in various environments, we find that moderate decision flexibility yields better outcomes.
arXiv Detail & Related papers (2024-11-11T17:37:47Z) - A Learnable Agent Collaboration Network Framework for Personalized Multimodal AI Search Engine [14.123823081267336]
This paper proposes a novel AI Search Engine framework called the Agent Collaboration Network (ACN)
The ACN framework consists of multiple specialized agents working collaboratively, each with distinct roles such as Account Manager, Solution Strategist, Information Manager, and Content Creator.
A highlight of the ACN is the introduction of a Reflective Forward Optimization method (RFO), which supports the online synergistic adjustment among agents.
arXiv Detail & Related papers (2024-09-01T07:01:22Z) - ADESSE: Advice Explanations in Complex Repeated Decision-Making Environments [14.105935964906976]
This work considers a problem setup where an intelligent agent provides advice to a human decision-maker.
We develop an approach named ADESSE to generate explanations about the adviser agent to improve human trust and decision-making.
arXiv Detail & Related papers (2024-05-31T08:59:20Z) - Information That Matters: Exploring Information Needs of People Affected by Algorithmic Decisions [11.421963387588864]
"XAI Novice Question Bank" is an extension of the XAI Question Bank containing a catalog of information needs from AI novices.
"XAI Novice Question Bank" contains a catalog of information needs from AI novices in two use cases: employment prediction and health monitoring.
Our work aims to support the inclusion of AI novices in explainability efforts by highlighting their information needs, aims, and challenges.
arXiv Detail & Related papers (2024-01-24T09:39:39Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - AVIS: Autonomous Visual Information Seeking with Large Language Model
Agent [123.75169211547149]
We propose an autonomous information seeking visual question answering framework, AVIS.
Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools.
AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
arXiv Detail & Related papers (2023-06-13T20:50:22Z) - Decision-Oriented Dialogue for Human-AI Collaboration [62.367222979251444]
We describe a class of tasks called decision-oriented dialogues, in which AI assistants such as large language models (LMs) must collaborate with one or more humans via natural language to help them make complex decisions.
We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends.
For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach.
arXiv Detail & Related papers (2023-05-31T17:50:02Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Difference-aware Knowledge Selection for Knowledge-grounded Conversation
Generation [101.48602006200409]
We propose a difference-aware knowledge selection method for multi-turn knowledge-grounded dialogs.
It first computes the difference between the candidate knowledge sentences provided at the current turn and those chosen in the previous turns.
Then, the differential information is fused with or disentangled from the contextual information to facilitate final knowledge selection.
arXiv Detail & Related papers (2020-09-20T07:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.