Agent-Oriented Planning in Multi-Agent Systems
- URL: http://arxiv.org/abs/2410.02189v2
- Date: Tue, 11 Mar 2025 11:22:17 GMT
- Title: Agent-Oriented Planning in Multi-Agent Systems
- Authors: Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, Yaliang Li,
- Abstract summary: We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
- Score: 54.429028104022066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Through the collaboration of multiple LLM-empowered agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within multi-agent systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task can be effectively resolved, resulting in satisfactory responses to user queries. These principles further inspire us to propose AOP, a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. According to the evaluation results, the meta-agent is also responsible for promptly making necessary adjustments to sub-tasks and scheduling. Besides, we integrate a feedback loop into AOP to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems. The source code is available at https://github.com/lalaliat/Agent-Oriented-Planning
Related papers
- Enhancing LLM-Based Agents via Global Planning and Hierarchical Execution [18.68431625184045]
GoalAct is a novel agent framework that introduces a continuously updated global planning mechanism and integrates a hierarchical execution strategy.
GoalAct decomposes task execution into high-level skills, including searching, coding, writing and more.
We evaluate GoalAct on LegalAgentBench, a benchmark with multiple types of legal tasks that require the use of multiple types of tools.
arXiv Detail & Related papers (2025-04-23T09:43:40Z) - Hypernetwork-based approach for optimal composition design in partially controlled multi-agent systems [5.860363407227059]
Partially Controlled Multi-Agent Systems (PCMAS) are comprised of controllable agents, managed by a system designer, and uncontrollable agents, operating autonomously.
This study addresses an optimal composition design problem in PCMAS, which involves the system designer's problem, determining the optimal number and policies of controllable agents, and the uncontrollable agents' problem.
We propose a novel hypernetwork-based framework that jointly optimize the system's composition and agent policies.
arXiv Detail & Related papers (2025-02-18T07:35:24Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.
We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
Proactive Agent Planning requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction.
We propose a novel multi-agent framework, Clarification-Execution-Planning (textttCEP), which consists of three agents specialized in clarification, execution, and planning.
arXiv Detail & Related papers (2024-06-18T14:07:28Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks.
Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent.
A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods.
arXiv Detail & Related papers (2024-05-29T18:08:37Z) - Devil's Advocate: Anticipatory Reflection for LLM Agents [53.897557605550325]
Our approach prompts LLM agents to decompose a given task into manageable subtasks.
We implement a three-fold introspective intervention:.
Anticipatory reflection on potential failures and alternative remedy before action execution.
Post-action alignment with subtask objectives and backtracking with remedy to ensure utmost effort in plan execution.
arXiv Detail & Related papers (2024-05-25T19:20:15Z) - A cooperative strategy for diagnosing the root causes of quality requirement violations in multiagent systems [4.710921988115686]
We propose a cooperative strategy focused on the identification of the root causes of quality requirement violations in multiagent systems.
This strategy allows agents to cooperate with each other in order to identify whether these violations come from service providers, associated components, or the communication infrastructure.
arXiv Detail & Related papers (2024-04-18T14:41:33Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition [11.998708550268978]
We propose an approach which uses an expert-provided decomposition of a task into simpler multi-agent sub-tasks.
In each sub-task, a subset of the entire team is trained to acquire sub-task-specific policies.
The sub-teams are then merged and transferred to the target task, where their policies are collectively fine-tuned to solve the more complex target task.
arXiv Detail & Related papers (2023-02-09T21:24:56Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.