Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2310.01380v2
- Date: Wed, 09 Oct 2024 00:58:22 GMT
- Title: Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
- Authors: Qiwei Di, Heyang Zhao, Jiafan He, Quanquan Gu,
- Abstract summary: We propose an oracle-efficient algorithm, dubbed Pessimistic Least-Square Value Iteration (PNLSVI) for offline RL with non-linear function approximation.
Our algorithm enjoys a regret bound that has a tight dependency on the function class complexity and achieves minimax optimal instance-dependent regret when specialized to linear function approximation.
- Score: 53.97335841137496
- License:
- Abstract: Offline reinforcement learning (RL), where the agent aims to learn the optimal policy based on the data collected by a behavior policy, has attracted increasing attention in recent years. While offline RL with linear function approximation has been extensively studied with optimal results achieved under certain assumptions, many works shift their interest to offline RL with non-linear function approximation. However, limited works on offline RL with non-linear function approximation have instance-dependent regret guarantees. In this paper, we propose an oracle-efficient algorithm, dubbed Pessimistic Nonlinear Least-Square Value Iteration (PNLSVI), for offline RL with non-linear function approximation. Our algorithmic design comprises three innovative components: (1) a variance-based weighted regression scheme that can be applied to a wide range of function classes, (2) a subroutine for variance estimation, and (3) a planning phase that utilizes a pessimistic value iteration approach. Our algorithm enjoys a regret bound that has a tight dependency on the function class complexity and achieves minimax optimal instance-dependent regret when specialized to linear function approximation. Our work extends the previous instance-dependent results within simpler function classes, such as linear and differentiable function to a more general framework.
Related papers
- Minimax Optimal and Computationally Efficient Algorithms for Distributionally Robust Offline Reinforcement Learning [6.969949986864736]
Distributionally robust offline reinforcement learning (RL) seeks robust policy training against environment perturbation by modeling dynamics uncertainty.
We propose minimax optimal and computationally efficient algorithms realizing function approximation.
Our results uncover that function approximation in robust offline RL is essentially distinct from and probably harder than that in standard offline RL.
arXiv Detail & Related papers (2024-03-14T17:55:10Z) - Revisiting the Linear-Programming Framework for Offline RL with General
Function Approximation [24.577243536475233]
offline reinforcement learning (RL) concerns pursuing an optimal policy for sequential decision-making from a pre-collected dataset.
Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators.
We revisit the linear-programming framework for offline RL, and advance the existing results in several aspects.
arXiv Detail & Related papers (2022-12-28T15:28:12Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
We propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $tilde O(dsqrtH3K)$.
Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
arXiv Detail & Related papers (2022-12-12T18:58:59Z) - On Instance-Dependent Bounds for Offline Reinforcement Learning with
Linear Function Approximation [80.86358123230757]
We present an algorithm called Bootstrapped and Constrained Pessimistic Value Iteration (BCP-VI)
Under a partial data coverage assumption, BCP-VI yields a fast rate of $tildemathcalO(frac1K)$ for offline RL when there is a positive gap in the optimal Q-value functions.
These are the first $tildemathcalO(frac1K)$ bound and absolute zero sub-optimality bound respectively for offline RL with linear function approximation from adaptive data.
arXiv Detail & Related papers (2022-11-23T18:50:44Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Non-Linear Reinforcement Learning in Large Action Spaces: Structural Conditions and Sample-efficiency of Posterior Sampling [28.371541697552928]
We present the first result for non-linear function approximation which holds for general action spaces under a linear embeddability condition.
We show worst case sample complexity guarantees that scale with a rank parameter of the RL problem.
arXiv Detail & Related papers (2022-03-15T20:50:26Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
offline reinforcement learning seeks to utilize offline/historical data to optimize sequential decision-making strategies.
We study the statistical limits of offline reinforcement learning with linear model representations.
arXiv Detail & Related papers (2022-03-11T09:00:12Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.