AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
Identification
- URL: http://arxiv.org/abs/2310.01433v1
- Date: Fri, 29 Sep 2023 14:45:51 GMT
- Title: AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
Identification
- Authors: Nazanin Ahmadi Daryakenari, Mario De Florio, Khemraj Shukla, George Em
Karniadakis
- Abstract summary: We present a new framework for parameter estimation and missing physics identification (gray-box) in Systems Biology.
The proposed framework -- named AI-Aristotle -- combines eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs)
We test the accuracy, speed, flexibility and robustness of AI-Aristotle based on two benchmark problems in Systems Biology.
- Score: 1.8434042562191815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering mathematical equations that govern physical and biological
systems from observed data is a fundamental challenge in scientific research.
We present a new physics-informed framework for parameter estimation and
missing physics identification (gray-box) in the field of Systems Biology. The
proposed framework -- named AI-Aristotle -- combines eXtreme Theory of
Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural
Networks (PINNs) with symbolic regression (SR) techniques for parameter
discovery and gray-box identification. We test the accuracy, speed, flexibility
and robustness of AI-Aristotle based on two benchmark problems in Systems
Biology: a pharmacokinetics drug absorption model, and an ultradian endocrine
model for glucose-insulin interactions. We compare the two machine learning
methods (X-TFC and PINNs), and moreover, we employ two different symbolic
regression techniques to cross-verify our results. While the current work
focuses on the performance of AI-Aristotle based on synthetic data, it can
equally handle noisy experimental data and can even be used for black-box
identification in just a few minutes on a laptop. More broadly, our work
provides insights into the accuracy, cost, scalability, and robustness of
integrating neural networks with symbolic regressors, offering a comprehensive
guide for researchers tackling gray-box identification challenges in complex
dynamical systems in biomedicine and beyond.
Related papers
- HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment [0.46435896353765527]
We introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks ( SBINNs)
The proposed method, Hyper SBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials.
arXiv Detail & Related papers (2024-08-26T13:40:33Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - Physics-informed Neural Network Estimation of Material Properties in Soft Tissue Nonlinear Biomechanical Models [2.8763745263714005]
We propose a new approach which relies on the combination of physics-informed neural networks (PINNs) with three-dimensional soft tissue nonlinear biomechanical models.
The proposed learning algorithm encodes information from a limited amount of displacement and, in some cases, strain data, that can be routinely acquired in the clinical setting.
Several benchmarks are presented to show the accuracy and robustness of the proposed method.
arXiv Detail & Related papers (2023-12-15T13:41:20Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physically constrained neural networks to solve the inverse problem for
neuron models [0.29005223064604074]
Systems biology and systems neurophysiology are powerful tools for a number of key applications in the biomedical sciences.
Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators.
arXiv Detail & Related papers (2022-09-24T12:51:15Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.