InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models
- URL: http://arxiv.org/abs/2408.08264v1
- Date: Thu, 15 Aug 2024 17:07:40 GMT
- Title: InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models
- Authors: Guoxiang Grayson Tong, Carlos A. Sing Long, Daniele E. Schiavazzi,
- Abstract summary: In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of cardiovascular model parameters from electronic health records (EHR) poses a significant challenge primarily due to lack of identifiability. Structural non-identifiability arises when a manifold in the space of parameters is mapped to a common output, while practical non-identifiability can result due to limited data, model misspecification, or noise corruption. To address the resulting ill-posed inverse problem, optimization-based or Bayesian inference approaches typically use regularization, thereby limiting the possibility of discovering multiple solutions. In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems. We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
Our experiments validate the improved accuracy and simplicity of discovered network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - NeuralSI: Structural Parameter Identification in Nonlinear Dynamical
Systems [9.77270939559057]
This paper explores a new framework, dubbed NeuralSI, for structural identification.
Our approach seeks to estimate nonlinear parameters from governing equations.
The trained model can also be extrapolated under both standard and extreme conditions.
arXiv Detail & Related papers (2022-08-26T16:32:51Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Parameter Estimation with Dense and Convolutional Neural Networks
Applied to the FitzHugh-Nagumo ODE [0.0]
We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a Fitz-Nagumo model.
We demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and processes, and they are capable of predicting parameters accurately for the framework.
arXiv Detail & Related papers (2020-12-12T01:20:42Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.