Spontaneously interacting qubits from Gauss-Bonnet
- URL: http://arxiv.org/abs/2310.01550v2
- Date: Mon, 8 Jan 2024 15:37:22 GMT
- Title: Spontaneously interacting qubits from Gauss-Bonnet
- Authors: Sean Prudhoe, Rishabh Kumar, Sarah Shandera
- Abstract summary: We show that KAQ critical metrics exist for loss functionals that include the Gauss-Bonnet term.
We find that exploiting the subalgebra structure leads us to natural classes of KAQ metrics which contain the familiar distributions for random Hamiltonians.
- Score: 1.433758865948252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building on previous constructions examining how a collection of small,
locally interacting quantum systems might emerge via spontaneous symmetry
breaking from a single-particle system of high dimension, we consider a larger
family of geometric loss functionals and explicitly construct several classes
of critical metrics which "know about qubits" (KAQ). The loss functional
consists of the Ricci scalar with the addition of the Gauss-Bonnet term, which
introduces an order parameter that allows for spontaneous symmetry breaking.
The appeal of this method is two-fold: (i) the Ricci scalar has already been
shown to have KAQ critical metrics and (ii) exact equations of motions are
known for loss functionals with generic curvature terms up to two derivatives.
We show that KAQ critical metrics, which are solutions to the equations of
motion in the space of left-invariant metrics with fixed determinant, exist for
loss functionals that include the Gauss-Bonnet term. We find that exploiting
the subalgebra structure leads us to natural classes of KAQ metrics which
contain the familiar distributions (GUE, GOE, GSE) for random Hamiltonians. We
introduce tools for this analysis that will allow for straightfoward, although
numerically intensive, extension to other loss functionals and higher-dimension
systems.
Related papers
- Entanglement asymmetry in CFT and its relation to non-topological
defects [0.0]
The entanglement asymmetry is an information based observable that quantifies the degree of symmetry breaking in a region of an extended quantum system.
We investigate this measure in the ground state of one dimensional critical systems described by a CFT.
arXiv Detail & Related papers (2024-02-05T19:01:09Z) - Renormalization group and spectra of the generalized P\"oschl-Teller
potential [0.0]
We study the P"oschl-Teller potential $V(x) = alpha2 g_s sinh-2(alpha x) + alpha2 g_c cosh-2(alpha x)$, for every value of the dimensionless parameters $g_s$ and $g_c singularity.
We show that supersymmetry of the potential, when present, is also spontaneously broken, along with conformal symmetry.
arXiv Detail & Related papers (2023-08-08T21:44:55Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Coherence generation, symmetry algebras and Hilbert space fragmentation [0.0]
We show a simple connection between classification of physical systems and their coherence generation properties, quantified by the coherence generating power (CGP)
We numerically simulate paradigmatic models with both ordinary symmetries and Hilbert space fragmentation, comparing the behavior of the CGP in each case with the system dimension.
arXiv Detail & Related papers (2022-12-29T18:31:16Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
We show how the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
We also show how using the gradient of the squared distance function offers better control over sensitivity than the Laplace mechanism.
arXiv Detail & Related papers (2022-09-21T18:14:38Z) - $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks [107.86545461433616]
We propose permutation-equivariant architectures, on which a determinant Slater is applied to induce antisymmetry.
FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function.
We substitute the Slater with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N2)$.
arXiv Detail & Related papers (2022-05-26T07:44:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Boundary Chaos [0.0]
Scrambling in many-body quantum systems causes initially local observables to spread uniformly over the whole available space under unitary dynamics.
We present a free quantum circuit model, in which ergodicity is induced by an impurity interaction placed on the system's boundary.
arXiv Detail & Related papers (2021-12-09T18:34:08Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Adding machine learning within Hamiltonians: Renormalization group
transformations, symmetry breaking and restoration [0.0]
We include the predictive function of a neural network, designed for phase classification, as a conjugate variable coupled to an external field within the Hamiltonian of a system.
Results show that the field can induce an order-disorder phase transition by breaking or restoring the symmetry.
We conclude by discussing how the method provides an essential step toward bridging machine learning and physics.
arXiv Detail & Related papers (2020-09-30T18:44:18Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.