Locality-Aware Graph-Rewiring in GNNs
- URL: http://arxiv.org/abs/2310.01668v2
- Date: Sat, 4 May 2024 14:53:28 GMT
- Title: Locality-Aware Graph-Rewiring in GNNs
- Authors: Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, Francesco Di Giovanni,
- Abstract summary: Graph Neural Networks (GNNs) are popular models for machine learning on graphs.
In this work, we identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect the locality of the graph, and (iii) preserve the sparsity of the graph.
We propose a novel rewiring framework that satisfies all of (i)iii through a locality-aware sequence of rewiring operations.
- Score: 5.356465360780597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are popular models for machine learning on graphs that typically follow the message-passing paradigm, whereby the feature of a node is updated recursively upon aggregating information over its neighbors. While exchanging messages over the input graph endows GNNs with a strong inductive bias, it can also make GNNs susceptible to over-squashing, thereby preventing them from capturing long-range interactions in the given graph. To rectify this issue, graph rewiring techniques have been proposed as a means of improving information flow by altering the graph connectivity. In this work, we identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect the locality of the graph, and (iii) preserve the sparsity of the graph. We highlight fundamental trade-offs that occur between spatial and spectral rewiring techniques; while the former often satisfy (i) and (ii) but not (iii), the latter generally satisfy (i) and (iii) at the expense of (ii). We propose a novel rewiring framework that satisfies all of (i)--(iii) through a locality-aware sequence of rewiring operations. We then discuss a specific instance of such rewiring framework and validate its effectiveness on several real-world benchmarks, showing that it either matches or significantly outperforms existing rewiring approaches.
Related papers
- Torque-based Graph Surgery:Enhancing Graph Neural Networks with Hierarchical Rewiring [16.99691459321181]
We propose a torque-driven hierarchical rewiring strategy to improve representation learning in heterophilous graphs.<n>We define an interference-aware torque metric that integrates structural distance and energy scores to quantify the perturbation induced by edges.<n>Our approach surpasses state-of-the-art methods on both heterophilous and homophilous graphs, and maintains high accuracy on noisy graph.
arXiv Detail & Related papers (2025-07-29T01:14:27Z) - Mitigating Over-Squashing in Graph Neural Networks by Spectrum-Preserving Sparsification [81.06278257153835]
We propose a graph rewiring method that balances structural bottleneck reduction and graph property preservation.<n>Our method generates graphs with enhanced connectivity while maintaining sparsity and largely preserving the original graph spectrum.
arXiv Detail & Related papers (2025-06-19T08:01:00Z) - Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey [0.0]
Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their effectiveness is often constrained by two critical challenges.
Oversquashing, where the excessive compression of information from distant nodes results in significant information loss, and oversmoothing, where repeated message-passing iterations homogenize node representations, obscuring meaningful distinctions.
In this survey, we examine graph rewiring techniques, a class of methods designed to address these structural bottlenecks by modifying graph topology to enhance information diffusion.
arXiv Detail & Related papers (2024-11-26T13:38:12Z) - Greener GRASS: Enhancing GNNs with Encoding, Rewiring, and Attention [12.409982249220812]
We introduce Graph Attention with Structures (GRASS), a novel GNN architecture, to enhance graph relative attention.
GRASS rewires the input graph by superimposing a random regular graph to achieve long-range information propagation.
It also employs a novel additive attention mechanism tailored for graph-structured data.
arXiv Detail & Related papers (2024-07-08T06:21:56Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - ABC: Aggregation before Communication, a Communication Reduction
Framework for Distributed Graph Neural Network Training and Effective
Partition [0.0]
Graph Neural Networks (GNNs) are neural models tailored for graph-structure data and have shown superior performance in learning representations for graph-structured data.
In this paper, we study the communication complexity during distributed GNNs training.
We show that the new partition paradigm is particularly ideal in the case of dynamic graphs where it is infeasible to control the edge placement due to the unknown of the graph-changing process.
arXiv Detail & Related papers (2022-12-11T04:54:01Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - DiffWire: Inductive Graph Rewiring via the Lov\'asz Bound [1.0323063834827415]
Graph Neural Networks (GNNs) have been shown to achieve competitive results to tackle graph-related tasks.
MPNNs have been reported to suffer from over-smoothing, over-squashing and under-reaching.
We propose DiffWire, a novel framework for graph rewiring in MPNNs that is principled, fully differentiable and parameter-free.
arXiv Detail & Related papers (2022-06-15T08:22:07Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Graph Highway Networks [77.38665506495553]
Graph Convolution Networks (GCN) are widely used in learning graph representations due to their effectiveness and efficiency.
They suffer from the notorious over-smoothing problem, in which the learned representations converge to alike vectors when many layers are stacked.
We propose Graph Highway Networks (GHNet) which utilize gating units to balance the trade-off between homogeneity and heterogeneity in the GCN learning process.
arXiv Detail & Related papers (2020-04-09T16:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.