Mitigating Over-Squashing in Graph Neural Networks by Spectrum-Preserving Sparsification
- URL: http://arxiv.org/abs/2506.16110v1
- Date: Thu, 19 Jun 2025 08:01:00 GMT
- Title: Mitigating Over-Squashing in Graph Neural Networks by Spectrum-Preserving Sparsification
- Authors: Langzhang Liang, Fanchen Bu, Zixing Song, Zenglin Xu, Shirui Pan, Kijung Shin,
- Abstract summary: We propose a graph rewiring method that balances structural bottleneck reduction and graph property preservation.<n>Our method generates graphs with enhanced connectivity while maintaining sparsity and largely preserving the original graph spectrum.
- Score: 81.06278257153835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The message-passing paradigm of Graph Neural Networks often struggles with exchanging information across distant nodes typically due to structural bottlenecks in certain graph regions, a limitation known as \textit{over-squashing}. To reduce such bottlenecks, \textit{graph rewiring}, which modifies graph topology, has been widely used. However, existing graph rewiring techniques often overlook the need to preserve critical properties of the original graph, e.g., \textit{spectral properties}. Moreover, many approaches rely on increasing edge count to improve connectivity, which introduces significant computational overhead and exacerbates the risk of over-smoothing. In this paper, we propose a novel graph rewiring method that leverages \textit{spectrum-preserving} graph \textit{sparsification}, for mitigating over-squashing. Our method generates graphs with enhanced connectivity while maintaining sparsity and largely preserving the original graph spectrum, effectively balancing structural bottleneck reduction and graph property preservation. Experimental results validate the effectiveness of our approach, demonstrating its superiority over strong baseline methods in classification accuracy and retention of the Laplacian spectrum.
Related papers
- Torque-based Graph Surgery:Enhancing Graph Neural Networks with Hierarchical Rewiring [16.99691459321181]
We propose a torque-driven hierarchical rewiring strategy to improve representation learning in heterophilous graphs.<n>We define an interference-aware torque metric that integrates structural distance and energy scores to quantify the perturbation induced by edges.<n>Our approach surpasses state-of-the-art methods on both heterophilous and homophilous graphs, and maintains high accuracy on noisy graph.
arXiv Detail & Related papers (2025-07-29T01:14:27Z) - A Signed Graph Approach to Understanding and Mitigating Oversmoothing in GNNs [54.62268052283014]
We present a unified theoretical perspective based on the framework of signed graphs.<n>We show that many existing strategies implicitly introduce negative edges that alter message-passing to resist oversmoothing.<n>We propose Structural Balanced Propagation (SBP), a plug-and-play method that assigns signed edges based on either labels or feature similarity.
arXiv Detail & Related papers (2025-02-17T03:25:36Z) - Cayley Graph Propagation [0.0]
Graph neural networks (GNNs) are notoriously vulnerable to over-squashing.<n>In this work, we show that truncation is detrimental to the coveted expansion properties.<n>We propose CGP, a method to propagate information over a complete Cayley graph structure.
arXiv Detail & Related papers (2024-10-04T13:32:34Z) - Graph Coarsening with Message-Passing Guarantees [10.02138130221506]
We propose a new message-passing operation specific to coarsened graphs, which exhibit theoretical guarantees on the preservation of the propagated signal.
We conduct node classification tasks on synthetic and real data and observe improved results compared to performing naive message-passing on the coarsened graph.
arXiv Detail & Related papers (2024-05-28T12:39:24Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph.
We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph.
We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.
arXiv Detail & Related papers (2022-10-21T07:58:03Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - SoftEdge: Regularizing Graph Classification with Random Soft Edges [18.165965620873745]
Graph data augmentation plays a vital role in regularizing Graph Neural Networks (GNNs)
Simple edge and node manipulations can create graphs with an identical structure or indistinguishable structures to message passing GNNs but of conflict labels.
We propose SoftEdge, which assigns random weights to a portion of the edges of a given graph to construct dynamic neighborhoods over the graph.
arXiv Detail & Related papers (2022-04-21T20:12:36Z) - Understanding over-squashing and bottlenecks on graphs via curvature [17.359098638324546]
Over-squashing is a phenomenon where the number of $k$-hop neighbors grows rapidly with $k$.
We introduce a new edge-based curvature and prove that negatively curved edges are responsible for over-squashing.
We also propose and experimentally test a curvature-based rewiring method to alleviate the over-squashing.
arXiv Detail & Related papers (2021-11-29T13:27:56Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.