論文の概要: Keypoint-Augmented Self-Supervised Learning for Medical Image
Segmentation with Limited Annotation
- arxiv url: http://arxiv.org/abs/2310.01680v1
- Date: Mon, 2 Oct 2023 22:31:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 18:28:03.499749
- Title: Keypoint-Augmented Self-Supervised Learning for Medical Image
Segmentation with Limited Annotation
- Title(参考訳): 注釈付き医用画像分割のためのキーポイント強化自己監督学習
- Authors: Zhangsihao Yang, Mengwei Ren, Kaize Ding, Guido Gerig, Yalin Wang
- Abstract要約: 本稿では,短距離と長距離の両方の自己注意を保った表現を抽出するキーポイント拡張融合層を提案する。
特に,長距離空間の自己意識を学習する追加入力を組み込むことで,CNN機能マップを複数スケールで拡張する。
提案手法は,より堅牢な自己アテンションを生成することにより,既存のSSLメソッドよりも優れる。
- 参考スコア(独自算出の注目度): 21.203307064937142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretraining CNN models (i.e., UNet) through self-supervision has become a
powerful approach to facilitate medical image segmentation under low annotation
regimes. Recent contrastive learning methods encourage similar global
representations when the same image undergoes different transformations, or
enforce invariance across different image/patch features that are intrinsically
correlated. However, CNN-extracted global and local features are limited in
capturing long-range spatial dependencies that are essential in biological
anatomy. To this end, we present a keypoint-augmented fusion layer that
extracts representations preserving both short- and long-range self-attention.
In particular, we augment the CNN feature map at multiple scales by
incorporating an additional input that learns long-range spatial self-attention
among localized keypoint features. Further, we introduce both global and local
self-supervised pretraining for the framework. At the global scale, we obtain
global representations from both the bottleneck of the UNet, and by aggregating
multiscale keypoint features. These global features are subsequently
regularized through image-level contrastive objectives. At the local scale, we
define a distance-based criterion to first establish correspondences among
keypoints and encourage similarity between their features. Through extensive
experiments on both MRI and CT segmentation tasks, we demonstrate the
architectural advantages of our proposed method in comparison to both CNN and
Transformer-based UNets, when all architectures are trained with randomly
initialized weights. With our proposed pretraining strategy, our method further
outperforms existing SSL methods by producing more robust self-attention and
achieving state-of-the-art segmentation results. The code is available at
https://github.com/zshyang/kaf.git.
- Abstract(参考訳): 自己スーパービジョンによるcnnモデル(すなわちunet)の事前トレーニングは、低いアノテーション条件下で医用画像のセグメンテーションを促進するための強力なアプローチとなっている。
最近のコントラスト学習手法は、同じ画像が異なる変換を受けたときに同様のグローバル表現を奨励し、あるいは本質的に相関している異なる画像/パッチの特徴に対して不変性を強制する。
しかしながら、cnnが抽出したグローバルおよびローカルの特徴は、生物学的解剖学に不可欠な長距離空間依存を捉えることに制限されている。
この目的のために,短距離および長距離の自己着脱を保存する表現を抽出したキーポイント提示型核融合層を提案する。
特に、局所化キーポイント特徴間の長距離空間自己アテンションを学習する追加入力を組み込むことにより、CNN機能マップを複数スケールで拡張する。
さらに,グローバルおよびローカルの自己教師付き事前学習についても紹介する。
グローバルスケールでは、UNetのボトルネックと、マルチスケールのキーポイント機能を集約することで、グローバルな表現を得る。
これらのグローバルな特徴はその後、画像レベルのコントラスト目的によって規則化される。
局所スケールでは、まずキーポイント間の対応を確立し、特徴間の類似性を促進するための距離ベースの基準を定義する。
CNN と Transformer ベースの UNets と比較して,すべてのアーキテクチャがランダムに初期化重みでトレーニングされている場合,MRI と CT のセグメンテーションタスクの広範な実験を通じて,提案手法のアーキテクチャ上の利点を実証する。
提案した事前学習戦略により,より堅牢な自己アテンションを生成し,最先端のセグメンテーション結果を得ることにより,既存のSSL手法よりも優れる。
コードはhttps://github.com/zshyang/kaf.gitで入手できる。
関連論文リスト
- Siamese Transformer Networks for Few-shot Image Classification [9.55588609556447]
人間は視覚分類タスクにおいて顕著な熟練度を示し、最小限の例で新しい画像を正確に認識し分類する。
既存の少数の画像分類手法は、大域的特徴と局所的特徴の両方を強調し、両者を統合することを考える研究はほとんどない。
我々は,シームズ変圧器ネットワーク(STN)に基づく新しいアプローチを提案する。
我々の戦略は, 複雑な特徴適応モジュールの必要性を回避し, 画像分類におけるグローバルな特徴と局所的な特徴の可能性を効果的に活用する。
論文 参考訳(メタデータ) (2024-07-16T14:27:23Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - Discriminative Region-based Multi-Label Zero-Shot Learning [145.0952336375342]
マルチラベルゼロショット学習(Multi-label zero-shot Learning、ZSL)は、標準のシングルラベルZSLのより現実的な対位法である。
本稿では,地域別識別可能性保存型ZSLに対する代替アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-20T17:56:47Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
リモートセマンティックセグメンテーションのためのGlobal style and Local matching Contrastive Learning Network (GLCNet)を提案する。
具体的には、画像レベルの表現をより良く学習するために、グローバルスタイルのコントラストモジュールが使用される。
コントラストモジュールにマッチするローカル特徴は、セマンティックセグメンテーションに有用なローカル領域の表現を学習するために設計されている。
論文 参考訳(メタデータ) (2021-06-20T03:03:40Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z) - IAUnet: Global Context-Aware Feature Learning for Person
Re-Identification [106.50534744965955]
IAUブロックは、グローバル空間、時間、チャネルコンテキストを組み込むことができる。
軽量でエンドツーエンドのトレーニングが可能で、既存のCNNに簡単に接続してIAUnetを形成することができる。
実験の結果、IAUnetは画像とビデオの両方で最先端のreIDタスクに対して好意的に機能することがわかった。
論文 参考訳(メタデータ) (2020-09-02T13:07:10Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
弱教師付きローカライゼーションは、画像レベルの監督のみを使用して対象対象領域を見つけることを目的としている。
我々は,より正確な物体位置を学習するために,異なる物体間の画素レベルの類似性を活用することを提案する。
ILSVRC検証セット上でトップ1のローカライズ誤差率45.17%を達成する。
論文 参考訳(メタデータ) (2020-08-12T04:14:11Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
そこで我々は,CutMixに基づく自然拡張拡張戦略であるAttentive CutMixを提案する。
各トレーニングイテレーションにおいて、特徴抽出器から中間注意マップに基づいて最も記述性の高い領域を選択する。
提案手法は単純かつ有効であり,実装が容易であり,ベースラインを大幅に向上させることができる。
論文 参考訳(メタデータ) (2020-03-29T15:01:05Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。