論文の概要: Zero-Shot Continuous Prompt Transfer: Generalizing Task Semantics Across
Language Models
- arxiv url: http://arxiv.org/abs/2310.01691v1
- Date: Mon, 2 Oct 2023 23:12:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 18:15:06.675540
- Title: Zero-Shot Continuous Prompt Transfer: Generalizing Task Semantics Across
Language Models
- Title(参考訳): ゼロショット連続プロンプト転送:言語モデル間のタスクセマンティクスの一般化
- Authors: Zijun Wu, Yongkang Wu, Lili Mou
- Abstract要約: 提案手法は,ソースプロンプトを相対空間に符号化し,対応するターゲットプロンプトを探索して対象モデルに転送するゼロショット連続プロンプト転送手法である。
実験により提案手法の有効性を確認し, 連続的プロンプトにおける「タスク意味論」が様々な言語モデルにまたがって一般化可能であることを示す。
- 参考スコア(独自算出の注目度): 27.1022647808318
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Prompt tuning in natural language processing (NLP) has become an increasingly
popular method for adapting large language models to specific tasks. However,
the transferability of these prompts, especially continuous prompts, between
different models remains a challenge. In this work, we propose a zero-shot
continuous prompt transfer method, where source prompts are encoded into
relative space and the corresponding target prompts are searched for
transferring to target models. Experimental results confirm the effectiveness
of our method, showing that 'task semantics' in continuous prompts can be
generalized across various language models. Moreover, we find that combining
'task semantics' from multiple source models can further enhance the
generalizability of transfer.
- Abstract(参考訳): 自然言語処理(NLP)におけるプロンプトチューニングは、大規模言語モデルを特定のタスクに適応させる手法として、ますます人気が高まっている。
しかし、これらのプロンプト、特に連続的なプロンプトの異なるモデル間の転送性は依然として課題である。
本研究では,ソースプロンプトを相対空間にエンコードし,対応するターゲットプロンプトを探索して対象モデルに転送するゼロショット連続プロンプト転送法を提案する。
実験の結果,連続的なプロンプトにおける「タスクセマンティクス」が様々な言語モデルで一般化できることを示した。
さらに、複数のソースモデルから「タスクセマンティクス」を組み合わせることで、転送の一般化性をさらに高めることができる。
関連論文リスト
- Eliciting Textual Descriptions from Representations of Continuous Prompts [11.489611613744724]
本稿では,モデル推論における表現からテキスト記述を抽出する連続的プロンプトの解釈手法を提案する。
本稿では,タスク性能が向上するにつれて,タスク記述の正確さが向上することを示す。
InSPEcTは、望ましくないプロパティを継続的なプロンプトでデバッグし、開発者がそれを緩和する方法を通知するために利用することができる。
論文 参考訳(メタデータ) (2024-10-15T14:46:11Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Cross-Lingual Transfer for Natural Language Inference via Multilingual Prompt Translator [104.63314132355221]
素早い学習による言語間移動は有望な効果を示した。
我々は,MPT(Multilingual Prompt Translator)という新しいフレームワークを提案する。
MPTは、ソース言語とはかなり異なる言語に移行する際、バニラプロンプトよりも顕著である。
論文 参考訳(メタデータ) (2024-03-19T03:35:18Z) - UniverSLU: Universal Spoken Language Understanding for Diverse Tasks with Natural Language Instructions [64.50935101415776]
我々は,様々な音声言語理解(SLU)タスクを共同で行う単一モデルを構築した。
我々は17のデータセットと9の言語にまたがる12の音声分類とシーケンス生成タスクタイプに対して,1つのマルチタスク学習モデル"UniverSLU"の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-04T17:10:23Z) - On Conditional and Compositional Language Model Differentiable Prompting [75.76546041094436]
プロンプトは、下流タスクでうまく機能するために、凍結した事前訓練言語モデル(PLM)を適応するための効果的な方法であることが示されている。
タスク命令や入力メタデータを連続的なプロンプトに変換することを学習する新しいモデル Prompt Production System (PRopS) を提案する。
論文 参考訳(メタデータ) (2023-07-04T02:47:42Z) - DiTTO: A Feature Representation Imitation Approach for Improving
Cross-Lingual Transfer [15.062937537799005]
ゼロショット転送を改善するためのドメインとしての言語。
我々のアプローチであるDiTTOは、標準のゼロショット微調整法よりも大幅に優れていることを示す。
我々のモデルは、数ショット設定であっても、標準的な微調整法よりも言語間移動がより良くできる。
論文 参考訳(メタデータ) (2023-03-04T08:42:50Z) - Zero-shot Cross-lingual Transfer of Prompt-based Tuning with a Unified
Multilingual Prompt [98.26682501616024]
我々はUniPromptと呼ばれるすべての言語に対して統一的なプロンプトを使用する新しいモデルを提案する。
統一的なプロンプトは多言語 PLM による計算であり、言語に依存しない表現を生成する。
提案手法は、異なる言語間で強いベースラインを著しく上回ることができる。
論文 参考訳(メタデータ) (2022-02-23T11:57:52Z) - SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer [7.2462572989580405]
本稿では,SPoT: Soft Prompt Transferと呼ばれる新しいプロンプトベーストランスファー学習手法を提案する。
SPoTは多くのタスクでPromptTuningの性能を大幅に向上させることを示す。
また,26のNLPタスクと160のソース・ターゲットタスクを組み合わせたタスク転送性についても大規模に検討した。
論文 参考訳(メタデータ) (2021-10-15T07:35:58Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。