Learning Expected Appearances for Intraoperative Registration during
Neurosurgery
- URL: http://arxiv.org/abs/2310.01735v1
- Date: Tue, 3 Oct 2023 01:50:48 GMT
- Title: Learning Expected Appearances for Intraoperative Registration during
Neurosurgery
- Authors: Nazim Haouchine, Reuben Dorent, Parikshit Juvekar, Erickson Torio,
William M. Wells III, Tina Kapur, Alexandra J. Golby and Sarah Frisken
- Abstract summary: We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances.
Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical microscope for a predicted range of transformations.
- Score: 39.256282185354465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel method for intraoperative patient-to-image registration by
learning Expected Appearances. Our method uses preoperative imaging to
synthesize patient-specific expected views through a surgical microscope for a
predicted range of transformations. Our method estimates the camera pose by
minimizing the dissimilarity between the intraoperative 2D view through the
optical microscope and the synthesized expected texture. In contrast to
conventional methods, our approach transfers the processing tasks to the
preoperative stage, reducing thereby the impact of low-resolution, distorted,
and noisy intraoperative images, that often degrade the registration accuracy.
We applied our method in the context of neuronavigation during brain surgery.
We evaluated our approach on synthetic data and on retrospective data from 6
clinical cases. Our method outperformed state-of-the-art methods and achieved
accuracies that met current clinical standards.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Monocular Microscope to CT Registration using Pose Estimation of the
Incus for Augmented Reality Cochlear Implant Surgery [3.8909273404657556]
We develop a method that permits direct 2D-to-3D registration of the view microscope video to the pre-operative Computed Tomography (CT) scan without the need for external tracking equipment.
Our results demonstrate the accuracy with an average rotation error of less than 25 degrees and a translation error of less than 2 mm, 3 mm, and 0.55% for the x, y, and z axes, respectively.
arXiv Detail & Related papers (2024-03-12T00:26:08Z) - An Endoscopic Chisel: Intraoperative Imaging Carves 3D Anatomical Models [8.516340459721484]
We propose a first vision-based approach to update the preoperative 3D anatomical model.
Results show a decrease in error during surgical progression as opposed to increasing when no update is employed.
arXiv Detail & Related papers (2024-02-19T05:06:52Z) - Action Recognition in Video Recordings from Gynecologic Laparoscopy [4.002010889177872]
Action recognition is a prerequisite for many applications in laparoscopic video analysis.
In this study, we design and evaluate a CNN-RNN architecture as well as a customized training-inference framework.
arXiv Detail & Related papers (2023-11-30T16:15:46Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
We evaluate the performance of transformer-based models in predicting postoperative acute renal failure, pulmonary complications, and postoperative in-hospital mortality.
Our results demonstrate that transformer-based models can achieve superior performance in predicting postoperative complications and outperform traditional machine learning models.
arXiv Detail & Related papers (2023-06-01T14:08:05Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities.
This is achieved using in-vivo data of gastric endoscopy (Hyper-Kvasir) in a fully unsupervised manner.
We also assess the effect of our method in computer vision tasks that underpin 3D reconstruction and camera motion estimation.
arXiv Detail & Related papers (2022-03-31T13:14:00Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Solving Inverse Problems in Medical Imaging with Score-Based Generative
Models [87.48867245544106]
Reconstructing medical images from partial measurements is an important inverse problem in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)
Existing solutions based on machine learning typically train a model to directly map measurements to medical images.
We propose a fully unsupervised technique for inverse problem solving, leveraging the recently introduced score-based generative models.
arXiv Detail & Related papers (2021-11-15T05:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.