Surgical Neural Radiance Fields from One Image
- URL: http://arxiv.org/abs/2507.00969v1
- Date: Tue, 01 Jul 2025 17:19:25 GMT
- Title: Surgical Neural Radiance Fields from One Image
- Authors: Alberto Neri, Maximilan Fehrentz, Veronica Penza, Leonardo S. Mattos, Nazim Haouchine,
- Abstract summary: We leverage preoperative MRI data to define the set of camera viewpoints and images needed for robust and unobstructed training.<n>The appearance of the surgical image is transferred to the pre-constructed training set through neural style transfer.<n>This process enables the creation of a dataset for instant and fast single-image NeRF training.
- Score: 1.7675961199872583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: Neural Radiance Fields (NeRF) offer exceptional capabilities for 3D reconstruction and view synthesis, yet their reliance on extensive multi-view data limits their application in surgical intraoperative settings where only limited data is available. In particular, collecting such extensive data intraoperatively is impractical due to time constraints. This work addresses this challenge by leveraging a single intraoperative image and preoperative data to train NeRF efficiently for surgical scenarios. Methods: We leverage preoperative MRI data to define the set of camera viewpoints and images needed for robust and unobstructed training. Intraoperatively, the appearance of the surgical image is transferred to the pre-constructed training set through neural style transfer, specifically combining WTC2 and STROTSS to prevent over-stylization. This process enables the creation of a dataset for instant and fast single-image NeRF training. Results: The method is evaluated with four clinical neurosurgical cases. Quantitative comparisons to NeRF models trained on real surgical microscope images demonstrate strong synthesis agreement, with similarity metrics indicating high reconstruction fidelity and stylistic alignment. When compared with ground truth, our method demonstrates high structural similarity, confirming good reconstruction quality and texture preservation. Conclusion: Our approach demonstrates the feasibility of single-image NeRF training in surgical settings, overcoming the limitations of traditional multi-view methods.
Related papers
- Monocular Marker-free Patient-to-Image Intraoperative Registration for Cochlear Implant Surgery [4.250558597144547]
Our framework seamlessly integrates with monocular surgical microscopes, making it highly practical for clinical use without additional hardware dependencies and requirements.<n>Our results suggest that our approach achieves clinically relevant accuracy in predicting 6D camera poses for registering 3D preoperative CT scans to 2D surgical scenes with an angular error within 10 degrees in most cases.
arXiv Detail & Related papers (2025-05-23T21:15:00Z) - SSDD-GAN: Single-Step Denoising Diffusion GAN for Cochlear Implant Surgical Scene Completion [4.250558597144547]
We propose an efficient method to complete the surgical scene of the synthetic postmastoidectomy dataset.<n>Our approach leverages self-supervised learning on real surgical datasets to train a Single-Step Denoising Diffusion-GAN (SSDD-GAN)<n>The trained model is then directly applied to the synthetic postmastoidectomy dataset using a zero-shot approach.
arXiv Detail & Related papers (2025-02-08T22:04:22Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models [1.6189876649941652]
We introduce emphSurgicaL-CD, a consistency-distilled diffusion method to generate realistic surgical images.
Our results demonstrate that our method outperforms GANs and diffusion-based approaches.
arXiv Detail & Related papers (2024-08-19T09:19:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Federated Learning of Generative Image Priors for MRI Reconstruction [5.3963856146595095]
Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit privacy risks arise during cross-site sharing of imaging data.
We introduce a novel method for MRI reconstruction based on Federated learning of Generative IMage Priors (FedGIMP)
FedGIMP leverages a two-stage approach: cross-site learning of a generative MRI prior, and subject-specific injection of the imaging operator.
arXiv Detail & Related papers (2022-02-08T22:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.