Waveform Manipulation Against DNN-based Modulation Classification Attacks
- URL: http://arxiv.org/abs/2310.01894v1
- Date: Tue, 3 Oct 2023 09:03:34 GMT
- Title: Waveform Manipulation Against DNN-based Modulation Classification Attacks
- Authors: Dimitrios Varkatzas, Antonios Argyriou,
- Abstract summary: We propose a method for defending against an eavesdropper that uses a Deep Neural Network (DNN) for learning the modulation of wireless communication signals.
Our method is based on manipulating the emitted waveform with the aid of a continuous time frequency-modulated (FM) obfuscating signal that is mixed with the modulated data.
The results indicate that careful selection of the parameters of the obfuscating waveform can drop classification performance at the eavesdropper to less than 10% in AWGN and fading channels with no performance loss at the LRx.
- Score: 2.8475397246467575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose a method for defending against an eavesdropper that uses a Deep Neural Network (DNN) for learning the modulation of wireless communication signals. Our method is based on manipulating the emitted waveform with the aid of a continuous time frequency-modulated (FM) obfuscating signal that is mixed with the modulated data. The resulting waveform allows a legitimate receiver (LRx) to demodulate the data but it increases the test error of a pre-trained or adversarially-trained DNN classifier at the eavesdropper. The scheme works for analog modulation and digital single carrier and multi carrier orthogonal frequency division multiplexing (OFDM) waveforms, while it can implemented in frame-based wireless protocols. The results indicate that careful selection of the parameters of the obfuscating waveform can drop classification performance at the eavesdropper to less than 10% in AWGN and fading channels with no performance loss at the LRx.
Related papers
- On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
We study the single-channel source separation problem involving frequency-division multiplexing (OFDM) signals.
We propose critical domain-informed modifications to the network parameterization, based on insights from OFDM structures.
arXiv Detail & Related papers (2023-03-11T16:29:13Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
We propose a novel deep-learning based technique that automatically recognizes intra-pulse modulation types of radar signals.
We show that the proposed FF-CNN technique outperforms the current state-of-the-art alternatives.
arXiv Detail & Related papers (2022-05-19T20:18:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - NeuralDPS: Neural Deterministic Plus Stochastic Model with Multiband
Excitation for Noise-Controllable Waveform Generation [67.96138567288197]
We propose a novel neural vocoder named NeuralDPS which can retain high speech quality and acquire high synthesis efficiency and noise controllability.
It generates waveforms at least 280 times faster than the WaveNet vocoder.
It is also 28% faster than WaveGAN's synthesis efficiency on a single core.
arXiv Detail & Related papers (2022-03-05T08:15:29Z) - Low-Interception Waveform: To Prevent the Recognition of Spectrum
Waveform Modulation via Adversarial Examples [6.378498479725599]
We propose a low-intercept waveform(LIW) generation method that can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party.
Our LIW exhibits significant low-interception performance even in the physical hardware experiment, decreasing the accuracy of the state of the art model to approximately $15%$ with small perturbations.
arXiv Detail & Related papers (2022-01-20T08:13:04Z) - Learning OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose a learning-based method to design OFDM-based waveforms that satisfy selected constraints while maximizing an achievable information rate.
We show that the end-to-end system is able to satisfy target PAPR and ACLR constraints and allows significant throughput gains.
arXiv Detail & Related papers (2021-10-21T08:58:59Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - End-to-End Learning of OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose to use a neural network (NN) at the transmitter to learn a high-dimensional modulation scheme allowing to control the PAPR and adjacent channel leakage ratio (ACLR)
The two NNs operate on top of OFDM, and are jointly optimized in and end-to-end manner using a training algorithm that enforces constraints on the PAPR and ACLR.
arXiv Detail & Related papers (2021-06-30T13:09:30Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
Wireless connectivity is instrumental in enabling federated learning (FL)
Channel randomnessperturbs each worker inversions model update while multiple workers updates incur significant interference on bandwidth.
In A-FADMM, all workers upload their model updates to the parameter server using a single channel via analog transmissions.
This not only saves communication bandwidth, but also hides each worker's exact model update trajectory from any eavesdropper.
arXiv Detail & Related papers (2020-07-03T16:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.