論文の概要: Soda: An Object-Oriented Functional Language for Specifying Human-Centered Problems
- arxiv url: http://arxiv.org/abs/2310.01961v2
- Date: Wed, 20 Nov 2024 17:26:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:09:37.871011
- Title: Soda: An Object-Oriented Functional Language for Specifying Human-Centered Problems
- Title(参考訳): Soda:人間中心の問題を特定するためのオブジェクト指向関数型言語
- Authors: Julian Alfredo Mendez,
- Abstract要約: ソーダ(Soda)は、自然に品質や量を扱うのに役立ち、その正確性をチェックする作業を大幅に単純化する言語である。
本稿では,コンピュータシステムにおける複雑な要件を符号化する記述型言語の設計を動機とした,言語の主要な特性について述べる。
我々は、問題をより透明でエラーの少ない方法で記述するのに役立つツールの概要を述べます。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present Soda (Symbolic Objective Descriptive Analysis), a language that helps to treat qualities and quantities in a natural way and greatly simplifies the task of checking their correctness. We present key properties for the language motivated by the design of a descriptive language to encode complex requirements on computer systems, and we explain how these key properties must be addressed to model these requirements with simple definitions. We give an overview of a tool that helps to describe problems in an easy way that we consider more transparent and less error-prone.
- Abstract(参考訳): 本稿では,品質と量の自然な扱いを支援する言語であるソーダ(シンボリック客観的記述分析)について述べる。
本稿では,コンピュータシステムにおける複雑な要件を符号化する記述型言語の設計を動機とする言語の主要な特性について述べる。
我々は、問題をより透明でエラーの少ない方法で記述するのに役立つツールの概要を述べます。
関連論文リスト
- Reasoning about Ambiguous Definite Descriptions [2.5398014196797605]
自然言語推論は、複雑な言語理解タスクを解く言語モデルの能力を改善する上で重要な役割を果たす。
言語におけるあいまいさを解決するために、大規模言語モデルが明示的な推論をどの程度有効に活用できるかを評価するためのリソースは存在しない。
この目的のためにあいまいな明確な記述を用い、そのようなフレーズからなる最初のベンチマークデータセットを作成し、公開することを提案する。
論文 参考訳(メタデータ) (2023-10-23T07:52:38Z) - DesCo: Learning Object Recognition with Rich Language Descriptions [93.8177229428617]
視覚言語アプローチの最近の発展は、言語指導から視覚認識モデルを学習するパラダイムシフトを引き起こしている。
本稿では,リッチ言語記述を用いたオブジェクト認識モデル学習のための記述条件付き(DesCo)パラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-24T21:05:02Z) - Did You Read the Instructions? Rethinking the Effectiveness of Task
Definitions in Instruction Learning [74.70157466822612]
教科学習におけるタスク定義の役割を体系的に研究する。
タスク出力を記述する内容を削除すると,モデルの性能が大幅に低下することがわかった。
本稿では,モデルのタスク命令の活用を支援するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T21:11:24Z) - Large Language Models Can Be Easily Distracted by Irrelevant Context [29.315230178997002]
本研究では,モデル解の精度が無関係な文脈によってどのように影響されるかを検討する。
我々は,大規模言語モデルにおける最先端のプロンプト手法の散らかしやすさをベンチマークで測定する。
論文 参考訳(メタデータ) (2023-01-31T20:48:57Z) - Python Code Generation by Asking Clarification Questions [57.63906360576212]
本稿では,この課題に対して,より斬新で現実的なセットアップを導入する。
我々は、自然言語記述の過小評価は、明確化を問うことで解決できると仮定する。
我々は、生成した合成明確化質問と回答を含む自然言語記述とコードのペアを含む、CodeClarQAという新しいデータセットを収集し、導入する。
論文 参考訳(メタデータ) (2022-12-19T22:08:36Z) - Identifying concept libraries from language about object structure [56.83719358616503]
自然言語記述を2Kプロシージャ生成オブジェクトの多種多様なセットに利用して,ユーザが使用する部分を特定する。
我々は、異なる部分概念を含むプログラムライブラリの空間の探索として、この問題を形式化する。
自然言語と構造化されたプログラム表現を組み合わせることで、人々が名前をつける部分概念を規定する基本的な情報理論的なトレードオフを発見する。
論文 参考訳(メタデータ) (2022-05-11T17:49:25Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
画像とオブジェクトインスタンスレベルでのコントラスト機能を学ぶためのエンドツーエンドのトレーニング可能なフレームワークを開発しています。
提案アルゴリズムをいくつかのベンチマークデータセットで評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-04-20T17:56:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。