An evaluation of pre-trained models for feature extraction in image
classification
- URL: http://arxiv.org/abs/2310.02037v1
- Date: Tue, 3 Oct 2023 13:28:14 GMT
- Title: An evaluation of pre-trained models for feature extraction in image
classification
- Authors: Erick da Silva Puls, Matheus V. Todescato, Joel L. Carbonera
- Abstract summary: This work aims to compare the performance of different pre-trained neural networks for feature extraction in image classification tasks.
Our results demonstrate that the best general performance along the datasets was achieved by CLIP-ViT-B and ViT-H-14, where the CLIP-ResNet50 model had similar performance but with less variability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, we have witnessed a considerable increase in performance in
image classification tasks. This performance improvement is mainly due to the
adoption of deep learning techniques. Generally, deep learning techniques
demand a large set of annotated data, making it a challenge when applying it to
small datasets. In this scenario, transfer learning strategies have become a
promising alternative to overcome these issues. This work aims to compare the
performance of different pre-trained neural networks for feature extraction in
image classification tasks. We evaluated 16 different pre-trained models in
four image datasets. Our results demonstrate that the best general performance
along the datasets was achieved by CLIP-ViT-B and ViT-H-14, where the
CLIP-ResNet50 model had similar performance but with less variability.
Therefore, our study provides evidence supporting the choice of models for
feature extraction in image classification tasks.
Related papers
- Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification [0.0]
We first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data.
Then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data.
arXiv Detail & Related papers (2024-11-19T01:01:56Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples.
For artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge.
We propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches.
arXiv Detail & Related papers (2024-05-06T02:02:57Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Learning Customized Visual Models with Retrieval-Augmented Knowledge [104.05456849611895]
We propose REACT, a framework to acquire the relevant web knowledge to build customized visual models for target domains.
We retrieve the most relevant image-text pairs from the web-scale database as external knowledge, and propose to customize the model by only training new modualized blocks while freezing all the original weights.
The effectiveness of REACT is demonstrated via extensive experiments on classification, retrieval, detection and segmentation tasks, including zero, few, and full-shot settings.
arXiv Detail & Related papers (2023-01-17T18:59:06Z) - Combining Image Features and Patient Metadata to Enhance Transfer
Learning [0.0]
We compare the performance of six state-of-the-art deep neural networks in classification tasks when using only image features, to when these are combined with patient metadata.
Our results indicate that this performance enhancement may be a general property of deep networks and should be explored in other areas.
arXiv Detail & Related papers (2021-10-08T15:43:31Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - Demystifying Contrastive Self-Supervised Learning: Invariances,
Augmentations and Dataset Biases [34.02639091680309]
Recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class.
We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations.
Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet.
arXiv Detail & Related papers (2020-07-28T00:11:31Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.