Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification
- URL: http://arxiv.org/abs/2411.12151v1
- Date: Tue, 19 Nov 2024 01:01:56 GMT
- Title: Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification
- Authors: Yuyang Xiao,
- Abstract summary: We first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data.
Then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data.
- Score: 0.0
- License:
- Abstract: This study aims to optimize the few-shot image classification task and improve the model's feature extraction and classification performance by combining self-supervised learning with the deep network model ResNet-101. During the training process, we first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data; then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data. The experimental results show that compared with traditional convolutional neural networks, ResNet-50, DenseNet, and other models, our method has achieved excellent performance of about 95.12% in classification accuracy (ACC) and F1 score, verifying the effectiveness of self-supervised learning in few-shot classification. This method provides an efficient and reliable solution for the field of few-shot image classification.
Related papers
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - An evaluation of pre-trained models for feature extraction in image
classification [0.0]
This work aims to compare the performance of different pre-trained neural networks for feature extraction in image classification tasks.
Our results demonstrate that the best general performance along the datasets was achieved by CLIP-ViT-B and ViT-H-14, where the CLIP-ResNet50 model had similar performance but with less variability.
arXiv Detail & Related papers (2023-10-03T13:28:14Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - Core Risk Minimization using Salient ImageNet [53.616101711801484]
We introduce the Salient Imagenet dataset with more than 1 million soft masks localizing core and spurious features for all 1000 Imagenet classes.
Using this dataset, we first evaluate the reliance of several Imagenet pretrained models (42 total) on spurious features.
Next, we introduce a new learning paradigm called Core Risk Minimization (CoRM) whose objective ensures that the model predicts a class using its core features.
arXiv Detail & Related papers (2022-03-28T01:53:34Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Selective Output Smoothing Regularization: Regularize Neural Networks by
Softening Output Distributions [5.725228891050467]
We propose Selective Output Smoothing Regularization, a novel regularization method for training the Convolutional Neural Networks (CNNs)
Inspired by the diverse effects on training from different samples, Selective Output Smoothing Regularization improves the performance by encouraging the model to produce equal logits on incorrect classes.
This plug-and-play regularization method can be conveniently incorporated into almost any CNN-based project without extra hassle.
arXiv Detail & Related papers (2021-03-29T07:21:06Z) - Robust Pollen Imagery Classification with Generative Modeling and Mixup
Training [0.0]
We present a robust deep learning framework that can generalize well for pollen grain aerobiological imagery classification.
We develop a convolutional neural network-based pollen grain classification approach and combine some of the best practices in deep learning for better generalization.
The proposed approach earned a fourth-place in the final rankings in the ICPR-2020 Pollen Grain Classification Challenge.
arXiv Detail & Related papers (2021-02-25T19:39:24Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.