論文の概要: Exploring Generalisability of Self-Distillation with No Labels for
SAR-Based Vegetation Prediction
- arxiv url: http://arxiv.org/abs/2310.02048v1
- Date: Tue, 3 Oct 2023 13:41:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 14:09:19.788599
- Title: Exploring Generalisability of Self-Distillation with No Labels for
SAR-Based Vegetation Prediction
- Title(参考訳): SARによる植生予測のためのラベルなし自己蒸留の一般性探索
- Authors: Laura Mart\'inez-Ferrer, Anna Jungbluth, Joseph A. Gallego-Mejia, Matt
Allen, Francisco Dorr, Freddie Kalaitzis, Ra\'ul Ramos-Poll\'an
- Abstract要約: 2つの合成開口レーダデータセット(S1GRD, GSSIC)を3つの地域(中国, コーヌス, ヨーロッパ)で使用したDINO-ViTベースモデルの事前学習を行う。
より小さなラベル付きデータセット上でモデルを微調整し、植生の割合を予測するとともに、モデルの埋め込み空間と、多様な地理的領域をまたいで一般化し、見当たらないデータとの接続を実証的に研究する。
- 参考スコア(独自算出の注目度): 5.057850174013128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we pre-train a DINO-ViT based model using two Synthetic Aperture
Radar datasets (S1GRD or GSSIC) across three regions (China, Conus, Europe). We
fine-tune the models on smaller labeled datasets to predict vegetation
percentage, and empirically study the connection between the embedding space of
the models and their ability to generalize across diverse geographic regions
and to unseen data. For S1GRD, embedding spaces of different regions are
clearly separated, while GSSIC's overlaps. Positional patterns remain during
fine-tuning, and greater distances in embeddings often result in higher errors
for unfamiliar regions. With this, our work increases our understanding of
generalizability for self-supervised models applied to remote sensing.
- Abstract(参考訳): 本研究では,DINO-ViTをベースとした2つの合成開口レーダデータセット(S1GRDまたはGSSIC)を3つのリージョン(中国,コヌス,ヨーロッパ)で事前トレーニングする。
より小さなラベル付きデータセット上でモデルを微調整し、植生の割合を予測するとともに、モデルの埋め込み空間と、多様な地理的領域をまたいで一般化し、見当たらないデータとの接続を実証的に研究する。
S1GRDの場合、異なる領域の埋め込み空間は明確に分離され、GSSICは重なり合う。
微調整中に位置パターンが残っており、埋め込み距離が大きくなると、不慣れな領域の誤差が高くなる。
これにより,リモートセンシングに適用した自己教師モデルに対する一般化可能性の理解が高まる。
関連論文リスト
- DiHuR: Diffusion-Guided Generalizable Human Reconstruction [51.31232435994026]
一般化可能なヒト3次元再構成のための拡散誘導モデルであるDiHuRを導入し,スパース・ミニマル・オーバーラップ画像からのビュー合成について述べる。
提案手法は, 一般化可能なフィードフォワードモデルと2次元拡散モデルとの2つのキー前処理をコヒーレントな方法で統合する。
論文 参考訳(メタデータ) (2024-11-16T03:52:23Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Deep autoregressive modeling for land use land cover [0.0]
ランド・ユース/ランド・カバー・モデリング(LULC)は、地理的特徴と地形、生態学、人間発達に関連する異なる空間パターンの間の長距離依存関係のために難しい課題である。
土地利用の空間パターンのモデル化とコンピュータビジョンからのイメージインペインティングの課題との密接な関係を同定し,約1900万個のLULCをモデル化するための改良されたPixelCNNアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-01-02T18:03:57Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
我々は,都市間セマンティックセマンティックセグメンテーションタスクの研究を目的とした,新しいマルチモーダルリモートセンシングベンチマークデータセット(ハイパースペクトル,マルチスペクトル,SARを含む)を構築した。
単一都市に留まらず,多都市環境からAIモデルの一般化能力を促進するため,高解像度なドメイン適応ネットワークであるHighDANを提案する。
高DANは, 並列高分解能融合方式で, 都市景観の空間的トポロジカルな構造を良好に維持することができる。
論文 参考訳(メタデータ) (2023-09-26T23:55:39Z) - SSCBench: A Large-Scale 3D Semantic Scene Completion Benchmark for Autonomous Driving [87.8761593366609]
SSCBenchは、広く使用されている自動車データセットのシーンを統合するベンチマークである。
我々は、単眼、三眼、クラウド入力を用いて、性能ギャップを評価するモデルをベンチマークする。
クロスドメインの一般化テストを簡単にするために、さまざまなデータセットにまたがったセマンティックラベルを統一しています。
論文 参考訳(メタデータ) (2023-06-15T09:56:33Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
オープンデータは、通常プライバシーポリシーに従うために、しばしば空間的に集約される。しかし、粗い、異質な集約は、下流のAI/MLシステムに対する一貫性のある学習と統合を複雑にする。
本稿では,空間的注意層をGRU(Gated Recurrent Unit)モデルに統合したSARN(Structurely-Aware Recurrent Network)を提案する。
履歴学習データに制限のあるシナリオでは、ある都市変数に事前学習したモデルを、数百のサンプルのみを用いて、他の都市変数に対して微調整できることを示す。
論文 参考訳(メタデータ) (2023-06-09T21:01:29Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - The data synergy effects of time-series deep learning models in
hydrology [9.282656246381102]
我々は、ビッグデータとディープラーニング(DL)の時代において、統一は地域化を著しく上回っていると論じる。
DLモデルの結果が、特性的に異なる地域からデータをプールする際に改善された、データシナジーと呼ばれる効果を強調します。
論文 参考訳(メタデータ) (2021-01-06T05:24:45Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z) - Meta-Learning for Few-Shot Land Cover Classification [3.8529010979482123]
分類タスクとセグメンテーションタスクにおけるモデル非依存メタラーニング(MAML)アルゴリズムの評価を行った。
数発のモデル適応は,正規勾配降下による事前学習よりも優れていた。
これは、メタラーニングによるモデル最適化が地球科学におけるタスクの恩恵をもたらすことを示唆している。
論文 参考訳(メタデータ) (2020-04-28T09:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。