Instances Need More Care: Rewriting Prompts for Instances with LLMs in the Loop Yields Better Zero-Shot Performance
- URL: http://arxiv.org/abs/2310.02107v4
- Date: Tue, 11 Jun 2024 19:00:03 GMT
- Title: Instances Need More Care: Rewriting Prompts for Instances with LLMs in the Loop Yields Better Zero-Shot Performance
- Authors: Saurabh Srivastava, Chengyue Huang, Weiguo Fan, Ziyu Yao,
- Abstract summary: Large language models (LLMs) have revolutionized zero-shot task performance.
Current methods using trigger phrases such as "Let's think step by step" remain limited.
This study introduces PRomPTed, an approach that optimize the zero-shot prompts for individual task instances.
- Score: 11.595274304409937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have revolutionized zero-shot task performance, mitigating the need for task-specific annotations while enhancing task generalizability. Despite its advancements, current methods using trigger phrases such as "Let's think step by step" remain limited. This study introduces PRomPTed, an approach that optimizes the zero-shot prompts for individual task instances following an innovative manner of "LLMs in the loop". Our comprehensive evaluation across 13 datasets and 10 task types based on GPT-4 reveals that PRomPTed significantly outperforms both the naive zero-shot approaches and a strong baseline (i.e., "Output Refinement") which refines the task output instead of the input prompt. Our experimental results also confirmed the generalization of this advantage to the relatively weaker GPT-3.5. Even more intriguingly, we found that leveraging GPT-3.5 to rewrite prompts for the stronger GPT-4 not only matches but occasionally exceeds the efficacy of using GPT-4 as the prompt rewriter. Our research thus presents a huge value in not only enhancing zero-shot LLM performance but also potentially enabling supervising LLMs with their weaker counterparts, a capability attracting much interest recently. Finally, our additional experiments confirm the generalization of the advantages to open-source LLMs such as Mistral 7B and Mixtral 8x7B.
Related papers
- GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.
GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - How Effectively Do LLMs Extract Feature-Sentiment Pairs from App Reviews? [2.218667838700643]
This study compares the performance of state-of-the-art LLMs, including GPT-4, ChatGPT, and different variants of Llama-2 chat.
For predicting positive and neutral sentiments, GPT-4 achieves f1-scores of 76% and 45% in the zero-shot setting.
arXiv Detail & Related papers (2024-09-11T10:21:13Z) - Beyond ChatGPT: Enhancing Software Quality Assurance Tasks with Diverse LLMs and Validation Techniques [14.230480872339463]
This paper investigates the capabilities of several Large Language Models (LLMs) across two SQA tasks: fault localization and vulnerability detection.
By implementing a voting mechanism to combine the LLMs' results, we achieved more than a 10% improvement over the GPT-3.5 in both tasks.
This approach led to performance improvements of 16% in fault localization and 12% in vulnerability detection compared to the GPT-3.5, with a 4% improvement compared to the best-performed LLMs.
arXiv Detail & Related papers (2024-09-02T07:26:19Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
We propose a Self-Challenge evaluation framework with human-in-the-loop.
Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances.
We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses.
arXiv Detail & Related papers (2024-08-16T19:01:52Z) - GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond [29.778018058541676]
GPT-Fathom is an open-source and reproducible evaluation suite for large language models (LLMs) built on top of OpenAI Evals.
We evaluate 10+ leading LLMs as well as OpenAI's legacy models on 20+ curated benchmarks across 7 capability categories, all aligned under settings.
arXiv Detail & Related papers (2023-09-28T16:43:35Z) - Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents [53.78782375511531]
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks.
This paper investigates generative LLMs for relevance ranking in Information Retrieval (IR)
To address concerns about data contamination of LLMs, we collect a new test set called NovelEval.
To improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models.
arXiv Detail & Related papers (2023-04-19T10:16:03Z) - Self-Refine: Iterative Refinement with Self-Feedback [62.78755306241981]
Self-Refine is an approach for improving initial outputs from large language models (LLMs) through iterative feedback and refinement.
We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs.
Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
arXiv Detail & Related papers (2023-03-30T18:30:01Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.