GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation
- URL: http://arxiv.org/abs/2410.08475v2
- Date: Sat, 08 Feb 2025 22:44:31 GMT
- Title: GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation
- Authors: Jiashu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, Alejandro Ribeiro,
- Abstract summary: Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.
GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
- Score: 108.2008975785364
- License:
- Abstract: Existing approaches based on context prompting or reinforcement learning (RL) to improve the reasoning capacities of large language models (LLMs) depend on the LLMs' internal knowledge to produce reliable Chain-Of-Thought (CoT). However, no matter the size of LLMs, certain problems cannot be resolved in a single forward pass. Meanwhile, agent-based reasoning systems require access to a comprehensive nonparametric knowledge base, which is often costly or not feasible for use in scientific and niche domains. We present Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input. GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak). Extensive experiments demonstrated the following benefits of our framework: (1) GIVE boosts the performance of LLMs across various sizes. (2) In some scenarios, GIVE allows smaller LLMs to surpass larger, more sophisticated ones in scientific tasks (GPT3.5T + GIVE > GPT4). (3) GIVE is effective on scientific and open-domain assessments. (4) GIVE is a training-free method that enables LLMs to tackle new problems that extend beyond their training data (up to 43.5% -> 88.2%} accuracy improvement). (5) GIVE allows LLM agents to reason using both restricted (very small) and noisy (very large) knowledge sources, accommodating knowledge graphs (KG) ranging from 135 to more than 840k nodes. (6) The reasoning process involved in GIVE is fully interpretable.
Related papers
- Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
Large language models (LLMs) perform surprisingly well and outperform human experts on many tasks.
This paper integrates and optimized a pipeline for selecting reasoning paths from KG based on LLM.
We also propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank.
arXiv Detail & Related papers (2024-04-16T08:28:16Z) - Can large language models explore in-context? [87.49311128190143]
We deploy Large Language Models as agents in simple multi-armed bandit environments.
We find that the models do not robustly engage in exploration without substantial interventions.
arXiv Detail & Related papers (2024-03-22T17:50:43Z) - Beyond Answers: Transferring Reasoning Capabilities to Smaller LLMs Using Multi-Teacher Knowledge Distillation [23.736611338497244]
TinyLLM is a new knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs.
We introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios.
Results show that TinyLLM can outperform large teacher LLMs significantly, despite a considerably smaller model size.
arXiv Detail & Related papers (2024-02-07T06:48:24Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph [29.447300472617826]
Think-on-Graph (ToG) is a new approach for external knowledge graphs (KG) in large language models (LLMs)
ToG iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results.
ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
arXiv Detail & Related papers (2023-07-15T03:31:38Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks.
We propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales from LLMs with augmented knowledge retrieved from an external knowledge base.
We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets.
arXiv Detail & Related papers (2023-05-28T13:00:00Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
arXiv Detail & Related papers (2022-12-31T22:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.