PASTA: PArallel Spatio-Temporal Attention with spatial auto-correlation
gating for fine-grained crowd flow prediction
- URL: http://arxiv.org/abs/2310.02284v1
- Date: Mon, 2 Oct 2023 14:10:42 GMT
- Title: PASTA: PArallel Spatio-Temporal Attention with spatial auto-correlation
gating for fine-grained crowd flow prediction
- Authors: Chung Park, Junui Hong, Cheonbok Park, Taesan Kim, Minsung Choi,
Jaegul Choo
- Abstract summary: We introduce a neural network named PArallel Spatio with spatial auto-correlation gating.
The components in our approach include spatial auto-correlation gating, multi-scale residual block, and temporal attention gating module.
- Score: 33.08230699138568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the movement patterns of objects (e.g., humans and vehicles) in
a city is essential for many applications, including city planning and
management. This paper proposes a method for predicting future city-wide crowd
flows by modeling the spatio-temporal patterns of historical crowd flows in
fine-grained city-wide maps. We introduce a novel neural network named PArallel
Spatio-Temporal Attention with spatial auto-correlation gating (PASTA) that
effectively captures the irregular spatio-temporal patterns of fine-grained
maps. The novel components in our approach include spatial auto-correlation
gating, multi-scale residual block, and temporal attention gating module. The
spatial auto-correlation gating employs the concept of spatial statistics to
identify irregular spatial regions. The multi-scale residual block is
responsible for handling multiple range spatial dependencies in the
fine-grained map, and the temporal attention gating filters out irrelevant
temporal information for the prediction. The experimental results demonstrate
that our model outperforms other competing baselines, especially under
challenging conditions that contain irregular spatial regions. We also provide
a qualitative analysis to derive the critical time information where our model
assigns high attention scores in prediction.
Related papers
- TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes [63.95928298690001]
We present TPP-Gaze, a novel and principled approach to model scanpath dynamics based on Neural Temporal Point Process (TPP)
Our results show the overall superior performance of the proposed model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-30T19:22:38Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
arXiv Detail & Related papers (2024-01-19T06:26:05Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility [5.864710987890994]
Deep GA-vLS assumes data to be of fixed and regular shaped tensor shaped and face challenges of handling irregular data.
We present a novel geo-aware enabled learning operation based on a novel data structure for dependencies while maintaining the recurrent mechanism.
arXiv Detail & Related papers (2022-11-27T16:51:28Z) - STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond [78.129039340528]
We propose a temporal-aware unit (STAU) for video prediction and beyond.
Our STAU can outperform other methods on all tasks in terms of performance and efficiency.
arXiv Detail & Related papers (2022-04-20T13:42:51Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations [72.4716073597902]
We propose a method to learn object Canonical Point Cloud Representations of dynamically or moving objects.
We demonstrate the effectiveness of our method on several applications including shape reconstruction, camera pose estimation, continuoustemporal sequence reconstruction, and correspondence estimation.
arXiv Detail & Related papers (2020-08-06T17:58:48Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Interpretable Crowd Flow Prediction with Spatial-Temporal Self-Attention [16.49833154469825]
The most challenging part of predicting crowd flow is to measure the complicated spatial-temporal dependencies.
We propose a Spatial-Temporal Self-Attention Network (STSAN) with an ST encoding gate that calculates the entire spatial-temporal representation.
Experimental results on traffic and mobile data demonstrate that the proposed method reduces inflow and outflow RMSE by 16% and 8% on the Taxi-NYC dataset.
arXiv Detail & Related papers (2020-02-22T12:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.