Spatial-temporal Forecasting for Regions without Observations
- URL: http://arxiv.org/abs/2401.10518v1
- Date: Fri, 19 Jan 2024 06:26:05 GMT
- Title: Spatial-temporal Forecasting for Regions without Observations
- Authors: Xinyu Su and Jianzhong Qi and Egemen Tanin and Yanchuan Chang and
Majid Sarvi
- Abstract summary: We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
- Score: 13.805203053973772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial-temporal forecasting plays an important role in many real-world
applications, such as traffic forecasting, air pollutant forecasting,
crowd-flow forecasting, and so on. State-of-the-art spatial-temporal
forecasting models take data-driven approaches and rely heavily on data
availability. Such models suffer from accuracy issues when data is incomplete,
which is common in reality due to the heavy costs of deploying and maintaining
sensors for data collection. A few recent studies attempted to address the
issue of incomplete data. They typically assume some data availability in a
region of interest either for a short period or at a few locations. In this
paper, we further study spatial-temporal forecasting for a region of interest
without any historical observations, to address scenarios such as unbalanced
region development, progressive deployment of sensors or lack of open data. We
propose a model named STSM for the task. The model takes a contrastive
learning-based approach to learn spatial-temporal patterns from adjacent
regions that have recorded data. Our key insight is to learn from the locations
that resemble those in the region of interest, and we propose a selective
masking strategy to enable the learning. As a result, our model outperforms
adapted state-of-the-art models, reducing errors consistently over both traffic
and air pollutant forecasting tasks. The source code is available at
https://github.com/suzy0223/STSM.
Related papers
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
Time series forecasting is critical in numerous real-world applications.
Traditional forecasting techniques struggle when data is scarce or not available at all.
Recent advancements often leverage large-scale foundation models for such tasks.
arXiv Detail & Related papers (2024-11-24T07:44:39Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - LibCity: A Unified Library Towards Efficient and Comprehensive Urban
Spatial-Temporal Prediction [74.08181247675095]
There are limitations in the existing field, including open-source data being in various formats and difficult to use.
We propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework.
arXiv Detail & Related papers (2023-04-27T17:19:26Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction [1.2862507359003323]
We present a novel deep learning architecture that incorporates theories of spatial statistics into neural networks.
DeepLATTE contains an autocorrelation-guided semi-supervised learning strategy to enforce both local autocorrelation patterns and global autocorrelation trends.
We conduct a demonstration of DeepLATTE using publicly available data for an important public health topic, air quality prediction in a well-fitting, complex physical environment.
arXiv Detail & Related papers (2021-12-10T03:21:19Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
We create a dynamic model for future wildfire predictions of five locations within the western United States through a deep neural network.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2021-11-28T03:21:46Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.