Non-Hermitian control of localization in mosaic photonic lattices
- URL: http://arxiv.org/abs/2310.02334v1
- Date: Tue, 3 Oct 2023 18:12:46 GMT
- Title: Non-Hermitian control of localization in mosaic photonic lattices
- Authors: Stefano Longhi
- Abstract summary: It is shown that in mosaic photonic lattices with on-site uncorrelated disorder or quasi-periodic order, the addition of uniform loss at alternating sites of the lattice results in the suppression or enhancement of wave spreading.
The results are illustrated by considering discrete-time quantum walks in synthetic photonic lattices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring the deep insights into localization, disorder, and wave transport
in non-Hermitian systems is an emergent area of research of relevance in
different areas of physics. Engineered photonic lattices, with spatial regions
of optical gain and loss, provide a prime and simple physical platform for
tailoring non-Hermitian Hamiltonians and for unveiling the intriguing interplay
between disorder and non-Hermiticity. Here it is shown that in mosaic photonic
lattices with on-site uncorrelated disorder or quasi-periodic order, the
addition of uniform loss at alternating sites of the lattice results in the
suppression or enhancement of wave spreading, thus providing a simple method
for non-Hermitian control of wave transport in disordered systems. The results
are illustrated by considering discrete-time quantum walks in synthetic
photonic lattices.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Diffraction and pseudospectra in non-Hermitian quasiperiodic lattices [0.0]
spatial distributions of gain and loss elements are physically possible in the context of integrated photonic waveguide arrays.
We systematically study the non-Hermitian quasiperiodic Aubry-Andr'e-Harper model with on-site gain and loss distribution (NHAAH)
arXiv Detail & Related papers (2024-10-11T18:38:30Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Emergent non-Hermitian localization phenomena in the synthetic space of
zero-dimensional bosonic systems [0.0]
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research.
We show how the non-Hermitian localization phenomena can naturally emerge in the synthetic field moments space of zero-dimensional bosonic systems.
arXiv Detail & Related papers (2021-10-28T16:44:52Z) - Exotic interactions mediated by a non-Hermitian photonic bath [0.0]
We study the exotic interaction between emitters mediated by the photonic modes of a lossy photonic lattice.
We show in a paradigmatic case study that structured losses in the field can seed exotic emission properties.
These findings introduce a new paradigm of light-mediated interactions with unprecedented features.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Non-Hermitian dislocation modes: Stability and melting across
exceptional points [0.0]
dislocation lattice defects support robust topological modes in the bulk of a non-Hermitian (NH) system.
We explicitly demonstrate these findings for a two-dimensional NH Chern insulator, thereby establishing that dislocation lattice defects can be instrumental to experimentally probe pristine NH topology.
arXiv Detail & Related papers (2021-05-11T17:59:33Z) - Geometry and superfluidity of the flat band in a non-Hermitian optical
lattice [1.8305518556327907]
We show that the interplay between the skin effect and flat-band localization leads to exotic localization properties.
A relation between the superfluid weight and non-Hermitian quantum metric of the quantum states manifold is built.
arXiv Detail & Related papers (2021-01-04T13:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.