Geometry and superfluidity of the flat band in a non-Hermitian optical
lattice
- URL: http://arxiv.org/abs/2101.00985v2
- Date: Mon, 17 May 2021 11:08:32 GMT
- Title: Geometry and superfluidity of the flat band in a non-Hermitian optical
lattice
- Authors: Peng He, Hai-Tao Ding, Shi-Liang Zhu
- Abstract summary: We show that the interplay between the skin effect and flat-band localization leads to exotic localization properties.
A relation between the superfluid weight and non-Hermitian quantum metric of the quantum states manifold is built.
- Score: 1.8305518556327907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an ultracold-atom setting where a fermionic superfluidity with
attractive s-wave interaction is uploaded in a non-Hermitian Lieb optical
lattice. The existence of a real-energy flat band solution is revealed. We show
that the interplay between the skin effect and flat-band localization leads to
exotic localization properties. We develop a multiband mean-field description
of this system and use both order parameters and superfluid weight to describe
the phase transition. A relation between the superfluid weight and
non-Hermitian quantum metric of the quantum states manifold is built. We find
non-monotone criticality depending on the non-Hermiticity, and the
non-reciprocity prominently enhances the phase coherence of the pairing field,
suggesting ubiquitous critical behavior of the non-Hermitian fermionic
superfluidity.
Related papers
- Non-Hermitian control of localization in mosaic photonic lattices [0.0]
It is shown that in mosaic photonic lattices with on-site uncorrelated disorder or quasi-periodic order, the addition of uniform loss at alternating sites of the lattice results in the suppression or enhancement of wave spreading.
The results are illustrated by considering discrete-time quantum walks in synthetic photonic lattices.
arXiv Detail & Related papers (2023-10-03T18:12:46Z) - Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and van Hove Singularity [0.0]
We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice.
We demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary.
arXiv Detail & Related papers (2023-09-28T06:21:55Z) - Quantum Simulation of the Bosonic Kitaev Chain [2.5447603534588628]
We study the bosonic analogue of the fermionic Kitaev chain, a 1D tight-binding model with both nearest-neighbor hopping and pairing terms.
Our experiment is an important first step towards exploring genuine many-body non-Hermitian quantum dynamics.
arXiv Detail & Related papers (2023-09-12T12:45:27Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Simulating non-Hermitian quasicrystals with single-photon quantum walks [8.119496606443793]
We experimentally simulate non-Hermitian quasicrystals using photonic quantum walks.
Our work opens the avenue of investigating the interplay of non-Hermiticity, quasiperiodicity, and spectral topology in open quantum systems.
arXiv Detail & Related papers (2021-12-30T12:19:42Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.