Multi-Gbps quantum randomness source based on direct detection and
vacuum states
- URL: http://arxiv.org/abs/2310.02354v1
- Date: Tue, 3 Oct 2023 18:30:18 GMT
- Title: Multi-Gbps quantum randomness source based on direct detection and
vacuum states
- Authors: Dino Solar Nikolic, Cosmo Lupo, Runjia Zhang, Tobias Rydberg, Ulrik L.
Andersen, Tobias Gehring
- Abstract summary: Quantum random number generators (QRNGs) based on quadrature measurements of the vacuum have so far used balanced homodyne detection to obtain a source of high entropy.
Here we propose a simple direct detection measurement scheme using only a laser and a photodiode that still extracts randomness from vacuum fluctuations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum random number generators (QRNGs) based on quadrature measurements of
the vacuum have so far used balanced homodyne detection to obtain a source of
high entropy. Here we propose a simple direct detection measurement scheme
using only a laser and a photodiode that still extracts randomness from vacuum
fluctuations. We prove the security of the QRNG based on a reduced set of
assumptions in comparison to previous security proofs for quadrature detection
as our proof does not require the laser or electronic noise to be Gaussian.
Using a low-cost setup based on a vertical-cavity surface-emitting laser we
experimentally implement the QRNG scheme. We propose a system characterization
method, apply it to our implementation and demonstrate a real-time randomness
extraction rate of 3.41 Gbit per second. The unique combination of speed, low
cost, and rigorous security proof gives our QRNG design a large potential for a
wide-scale usage in a variety of applications ranging from quantum key
distribution to mobile applications and internet of things.
Related papers
- How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - High-speed Source-Device-Independent Quantum Random Number Generator on a Chip [1.358811874806501]
Quantum Random Number Generators (QRNGs) are currently the sole technology capable of producing true randomness.
We present a high-performance source-device independent QRNG leveraging a custom made integrated photonic chip.
arXiv Detail & Related papers (2023-05-21T14:27:36Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Provably-secure quantum randomness expansion with uncharacterised
homodyne detection [12.166727618150196]
Quantum random number generators (QRNGs) are able to generate numbers that are certifiably random, even to an agent who holds some side-information.
Such systems typically require that the elements being used are precisely calibrated and validly certified for a credible security analysis.
We propose, design and experimentally demonstrate a QRNG protocol that completely removes the calibration requirement for the measurement device.
arXiv Detail & Related papers (2022-06-08T03:13:25Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Multi-bit quantum random number generator from path-entangled single
photons [2.095553036791944]
Measurement outcomes on quantum systems exhibit inherent randomness and are fundamentally nondeterministic.
We present a scheme for the generation of multi-bit random numbers using path-entangled single photons.
arXiv Detail & Related papers (2022-02-22T14:37:17Z) - Certified quantum random number generator based on single-photon
entanglement [0.0]
We show a new certified quantum random number generator based on momentum-polarization entangled single photon states.
A semi-device-independent modeling of the photonic quantum random number generator is developed.
Our results show that a simple optical implementation combined with an accurate modeling provide an entanglement-based high-security quantum random number generator.
arXiv Detail & Related papers (2021-04-09T16:01:25Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Unpredictable and Uniform RNG based on time of arrival using InGaAs
Detectors [0.14337588659482517]
We have generated high-quality quantum random numbers from a weak coherent source at telecommunication wavelength.
The entropy is based on time of arrival of quantum states within a predefined time interval.
The detection of photons by the InGaAs single-photon detectors and high precision time measurement of 5 ps enables us to generate 16 random bits per arrival time.
arXiv Detail & Related papers (2020-10-24T13:31:00Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.