FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2310.02401v2
- Date: Fri, 3 May 2024 20:06:17 GMT
- Title: FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models
- Authors: Yingqian Cui, Jie Ren, Yuping Lin, Han Xu, Pengfei He, Yue Xing, Lingjuan Lyu, Wenqi Fan, Hui Liu, Jiliang Tang,
- Abstract summary: We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
- Score: 64.89896692649589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image generative models, especially those based on latent diffusion models (LDMs), have demonstrated outstanding ability in generating high-quality and high-resolution images from textual prompts. With this advancement, various fine-tuning methods have been developed to personalize text-to-image models for specific applications such as artistic style adaptation and human face transfer. However, such advancements have raised copyright concerns, especially when the data are used for personalization without authorization. For example, a malicious user can employ fine-tuning techniques to replicate the style of an artist without consent. In light of this concern, we propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models. FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies. In particular, it introduces an innovative algorithm for watermark generation. It ensures the seamless transfer of watermarks from training images to generated outputs, facilitating the identification of copyrighted material use. To tackle the variability in fine-tuning methods and their impact on watermark detection, FT-Shield integrates a Mixture of Experts (MoE) approach for watermark detection. Comprehensive experiments validate the effectiveness of our proposed FT-Shield.
Related papers
- Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images.
Recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations.
In this paper, we examine the robustness of various watermark-based protection methods applied to text-to-image models.
arXiv Detail & Related papers (2024-11-22T22:28:19Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)
TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.
Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
Stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing.
The exposure of AI-created content on public platforms could raise both legal and ethical risks.
In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely SafeSD) to adaptive implant the watermarks into the imperceptible structure.
arXiv Detail & Related papers (2024-07-18T05:53:17Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
Diffusion-based image generation models can create artistic images that mimic the style of an artist or maliciously edit the original images for fake content.
Several attempts have been made to protect the original images from such unauthorized data usage by adding imperceptible perturbations.
In this work, we introduce a purification perturbation platform, named IMPRESS, to evaluate the effectiveness of imperceptible perturbations as a protective measure.
arXiv Detail & Related papers (2023-10-30T03:33:41Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - Adaptive Blind Watermarking Using Psychovisual Image Features [8.75217589103206]
This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image.
Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks.
arXiv Detail & Related papers (2022-12-25T06:33:36Z) - A Robust Document Image Watermarking Scheme using Deep Neural Network [10.938878993948517]
This paper proposes an end-to-end document image watermarking scheme using the deep neural network.
Specifically, an encoder and a decoder are designed to embed and extract the watermark.
A text-sensitive loss function is designed to limit the embedding modification on characters.
arXiv Detail & Related papers (2022-02-26T05:28:52Z) - Protecting the Intellectual Properties of Deep Neural Networks with an
Additional Class and Steganographic Images [7.234511676697502]
We propose a method to protect the intellectual properties of deep neural networks (DNN) models by using an additional class and steganographic images.
We adopt the least significant bit (LSB) image steganography to embed users' fingerprints into watermark key images.
On Fashion-MNIST and CIFAR-10 datasets, the proposed method can obtain 100% watermark accuracy and 100% fingerprint authentication success rate.
arXiv Detail & Related papers (2021-04-19T11:03:53Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.