T2IW: Joint Text to Image & Watermark Generation
- URL: http://arxiv.org/abs/2309.03815v1
- Date: Thu, 7 Sep 2023 16:12:06 GMT
- Title: T2IW: Joint Text to Image & Watermark Generation
- Authors: An-An Liu, Guokai Zhang, Yuting Su, Ning Xu, Yongdong Zhang, and
Lanjun Wang
- Abstract summary: We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
- Score: 74.20148555503127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in text-conditioned image generative models have
revolutionized the production of realistic results. Unfortunately, this has
also led to an increase in privacy violations and the spread of false
information, which requires the need for traceability, privacy protection, and
other security measures. However, existing text-to-image paradigms lack the
technical capabilities to link traceable messages with image generation. In
this study, we introduce a novel task for the joint generation of text to image
and watermark (T2IW). This T2IW scheme ensures minimal damage to image quality
when generating a compound image by forcing the semantic feature and the
watermark signal to be compatible in pixels. Additionally, by utilizing
principles from Shannon information theory and non-cooperative game theory, we
are able to separate the revealed image and the revealed watermark from the
compound image. Furthermore, we strengthen the watermark robustness of our
approach by subjecting the compound image to various post-processing attacks,
with minimal pixel distortion observed in the revealed watermark. Extensive
experiments have demonstrated remarkable achievements in image quality,
watermark invisibility, and watermark robustness, supported by our proposed set
of evaluation metrics.
Related papers
- Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
We propose a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication.
Our proposed framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks.
arXiv Detail & Related papers (2024-10-02T18:05:03Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
Stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing.
The exposure of AI-created content on public platforms could raise both legal and ethical risks.
In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely SafeSD) to adaptive implant the watermarks into the imperceptible structure.
arXiv Detail & Related papers (2024-07-18T05:53:17Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Duwak: Dual Watermarks in Large Language Models [49.00264962860555]
We propose, Duwak, to enhance the efficiency and quality of watermarking by embedding dual secret patterns in both token probability distribution and sampling schemes.
We evaluate Duwak extensively on Llama2, against four state-of-the-art watermarking techniques and combinations of them.
arXiv Detail & Related papers (2024-03-12T16:25:38Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models.
We propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping.
arXiv Detail & Related papers (2023-11-02T16:04:32Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
arXiv Detail & Related papers (2023-10-03T19:50:08Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z) - Adaptive Blind Watermarking Using Psychovisual Image Features [8.75217589103206]
This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image.
Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks.
arXiv Detail & Related papers (2022-12-25T06:33:36Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.