Episodic Memory Theory for the Mechanistic Interpretation of Recurrent
Neural Networks
- URL: http://arxiv.org/abs/2310.02430v1
- Date: Tue, 3 Oct 2023 20:52:37 GMT
- Title: Episodic Memory Theory for the Mechanistic Interpretation of Recurrent
Neural Networks
- Authors: Arjun Karuvally and Peter Delmastro and Hava T. Siegelmann
- Abstract summary: We propose the Episodic Memory Theory (EMT), illustrating that RNNs can be conceptualized as discrete-time analogs of the recently proposed General Sequential Episodic Memory Model.
We introduce a novel set of algorithmic tasks tailored to probe the variable binding behavior in RNNs.
Our empirical investigations reveal that trained RNNs consistently converge to the variable binding circuit, thus indicating universality in the dynamics of RNNs.
- Score: 3.683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the intricate operations of Recurrent Neural Networks (RNNs)
mechanistically is pivotal for advancing their capabilities and applications.
In this pursuit, we propose the Episodic Memory Theory (EMT), illustrating that
RNNs can be conceptualized as discrete-time analogs of the recently proposed
General Sequential Episodic Memory Model. To substantiate EMT, we introduce a
novel set of algorithmic tasks tailored to probe the variable binding behavior
in RNNs. Utilizing the EMT, we formulate a mathematically rigorous circuit that
facilitates variable binding in these tasks. Our empirical investigations
reveal that trained RNNs consistently converge to the variable binding circuit,
thus indicating universality in the dynamics of RNNs. Building on these
findings, we devise an algorithm to define a privileged basis, which reveals
hidden neurons instrumental in the temporal storage and composition of
variables, a mechanism vital for the successful generalization in these tasks.
We show that the privileged basis enhances the interpretability of the learned
parameters and hidden states of RNNs. Our work represents a step toward
demystifying the internal mechanisms of RNNs and, for computational
neuroscience, serves to bridge the gap between artificial neural networks and
neural memory models.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
Spiking Neural Networks (SNNs) have become an essential paradigm in neuroscience and artificial intelligence.
Recent advances in literature have studied the network representations of deep neural networks.
arXiv Detail & Related papers (2024-03-19T05:37:26Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Implicit N-grams Induced by Recurrence [10.053475465955794]
We present a study that shows there actually exist some explainable components that reside within the hidden states.
We evaluated such extracted explainable features from trained RNNs on downstream sentiment analysis tasks and found they could be used to model interesting linguistic phenomena.
arXiv Detail & Related papers (2022-05-05T15:53:46Z) - Learning and Generalization in RNNs [11.107204912245841]
We prove that simple recurrent neural networks can learn functions of sequences.
New ideas enable us to extract information from the hidden state of the RNN in our proofs.
arXiv Detail & Related papers (2021-05-31T18:27:51Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure.
In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli.
arXiv Detail & Related papers (2019-06-03T21:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.