Improving photon blockade, entanglement and mechanical-cat-state
generation in a generalized cross-Kerr optomechanical circuit
- URL: http://arxiv.org/abs/2310.02443v2
- Date: Mon, 11 Dec 2023 19:10:30 GMT
- Title: Improving photon blockade, entanglement and mechanical-cat-state
generation in a generalized cross-Kerr optomechanical circuit
- Authors: Hossein Solki, Ali Motazedifard, Mohammad Hossein Naderi
- Abstract summary: Scheme improves few-photon optomechanical effects, including photon blockade and mechanical-Schrodinger cat-state generation.
Generalized cross-Kerr optomechanical system can be found potential applications in microwave quantum sensing, quantum telecommunication, and quantum information protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a feasible experimental scheme to improve the few-photon
optomechanical effects, including photon blockade and mechanical-Schrodinger
cat-state generation, as well as photon-phonon entanglement in a tripartite
microwave optomechanical circuit. The system under consideration is formed by a
single-Cooper-pair transistor, a microwave LC resonator, and a micromechanical
resonator. Our scheme is based on an additional higher-order (generalized)
nonlinear cross-Kerr type of coupling, linearly dependent on photon number
while quadratically dependent on mechanical phonon one, which can be realized
via adjusting the gate charge of the Cooper-pair transistor. We show, both
analytically and numerically, that the presence of both cross-Kerr and
generalized cross-Kerr nonlinearities not only may give rise to the enhancement
of one- and two-photon blockades as well as photon induced tunneling but can
also provide more controllability over them. Furthermore, it is shown that in
the regime of zero optomechanical coupling, with the aid of generalized
cross-Kerr nonlinearity, one can generate multi-components mechanical
superposition states which exhibit robustness against system dissipations. We
also study the steady-state entanglement between the microwave and mechanical
modes, the results of which signify the role of generalized cross-Kerr
nonlinearity in enhancing the entanglement in the regime of large-red detuning.
The proposed generalized cross-Kerr optomechanical system can be found
potential applications in microwave quantum sensing, quantum telecommunication,
and quantum information protocols.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Design of a release-free piezo-optomechanical quantum transducer [0.0]
A promising approach to quantum microwave-optics transduction uses an intermediary mechanical mode along with piezo-optomechanical interactions.
Here, we introduce a release-free, i.e. non-suspended, piezo-optomechanical transducer.
We propose and design a silicon-on-sapphire (SOS) release-free transducer with appealing piezo- and optomechanical performance.
arXiv Detail & Related papers (2024-08-27T15:13:41Z) - Single-photon induced instabilities in a cavity electromechanical device [0.0]
nonlinear radiation-pressure interaction in Cavity-electromechanical systems could result in an unstable response of the mechanical resonator.
By using polariton modes formed by a strongly coupled flux-tunable transmon and a microwave cavity, here we demonstrate an electromechanical device and achieve a single-photon coupling rate.
Such an improvement in the single-photon coupling rate and the observations of microwave frequency combs at single-photon levels may have applications in the quantum control of the motional states and critical parametric sensing.
arXiv Detail & Related papers (2023-09-13T07:33:09Z) - Coupling enhancement and symmetrization of single-photon optomechanics
in open quantum systems [0.76146285961466]
We study optimal reciprocal transport in symmetric optomechanics.
This work may pave the way to studying the single-photon optomechanical effects with current experimental platforms.
arXiv Detail & Related papers (2023-02-09T19:01:15Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Microwave-optics Entanglement via Cavity Optomagnomechanics [4.24565587746027]
A new mechanism for preparing stationary entanglement between microwave and optical cavity fields is proposed.
The microwave-optics entanglement is robust against thermal noise.
It will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
arXiv Detail & Related papers (2022-08-23T02:58:10Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.