Design of a release-free piezo-optomechanical quantum transducer
- URL: http://arxiv.org/abs/2408.15134v1
- Date: Tue, 27 Aug 2024 15:13:41 GMT
- Title: Design of a release-free piezo-optomechanical quantum transducer
- Authors: Paul Burger, Joey Frey, Johan Kolvik, David Hambraeus, Raphaƫl Van Laer,
- Abstract summary: A promising approach to quantum microwave-optics transduction uses an intermediary mechanical mode along with piezo-optomechanical interactions.
Here, we introduce a release-free, i.e. non-suspended, piezo-optomechanical transducer.
We propose and design a silicon-on-sapphire (SOS) release-free transducer with appealing piezo- and optomechanical performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum transduction between microwave and optical photons could combine the long-range connectivity provided by optical photons with the deterministic quantum operations of superconducting microwave qubits. A promising approach to quantum microwave-optics transduction uses an intermediary mechanical mode along with piezo-optomechanical interactions. So far, such transducers have been released from their underlying substrate to confine mechanical fields -- preventing proper thermal anchoring and creating a noise-efficiency trade-off resulting from optical absorption. Here, we introduce a release-free, i.e. non-suspended, piezo-optomechanical transducer intended to circumvent this noise-efficiency trade-off. We propose and design a silicon-on-sapphire (SOS) release-free transducer with appealing piezo- and optomechanical performance. Our proposal integrates release-free lithium niobate electromechanical crystals with silicon optomechanical crystals on a sapphire substrate meant to improve thermal anchoring along with microwave and mechanical coherence. It leverages high-wavevector mechanical modes firmly guided on the chip surface. Beyond quantum science and engineering, the proposed platform and design principles are attractive for low-power acousto-optic systems in integrated photonics.
Related papers
- Optomechanical ring resonator for efficient microwave-optical frequency
conversion [3.8548408603545106]
Phonons traveling in solid-state devices are emerging as a universal excitation that can couple to different physical systems through mechanical interaction.
It is possible to build optomechanical integrated circuits (OMICs) that guide both photons and phonons and interconnect discrete photonic and phononic devices.
Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR) in which infrared photons and GHz phonons co-resonate to induce significantly enhanced interconversion.
arXiv Detail & Related papers (2023-11-10T23:54:07Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Microwave-optics Entanglement via Cavity Optomagnomechanics [4.24565587746027]
A new mechanism for preparing stationary entanglement between microwave and optical cavity fields is proposed.
The microwave-optics entanglement is robust against thermal noise.
It will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
arXiv Detail & Related papers (2022-08-23T02:58:10Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Microwave-to-optical conversion with a gallium phosphide photonic
crystal cavity [0.0]
We present a novel platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits.
We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of $sim$ 200 kHz.
arXiv Detail & Related papers (2021-05-27T15:40:14Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.