Prepare Ansatz for VQE with Diffusion Model
- URL: http://arxiv.org/abs/2310.02511v1
- Date: Wed, 4 Oct 2023 01:12:35 GMT
- Title: Prepare Ansatz for VQE with Diffusion Model
- Authors: Yilin Shen
- Abstract summary: The Variational Quantum Eigensolver (VQE) is a quantum algorithm used to find the ground state energy of a given Hamiltonian.
The key component of VQE is the ansatz, which is a trial wavefunction that the algorithm uses to approximate the ground state.
- Score: 26.291188734518407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Variational Quantum Eigensolver (VQE) is a quantum algorithm used to find
the ground state energy of a given Hamiltonian. The key component of VQE is the
ansatz, which is a trial wavefunction that the algorithm uses to approximate
the ground state. Designing a good ansatz can significantly improve the
performance of the VQE algorithm. Typical ansatz structures include the Unitary
Coupled Cluster (UCC) ansatz and the Hardware-Efficient Ansatz (HEA). The
primary distinction between these two structures lies in their dependence on
the problem and hardware. The UCC ansatz is tailored to the target Hamiltonian,
whereas the HEA is determined by the hardware topology. We believe that an
intermediate approach could combine the benefits of the UCC ansatz while
introducing additional parameters to increase its expressiveness and
capability. In this paper, we propose utilizing a diffusion model to facilitate
the generation of ansatz. We create a sequence of UCC ansatzes as training data
and input this data into the diffusion model. The model then generates quantum
circuits that have a similar structure to the input data. These quantum
circuits are subsequently tested using a VQE task to evaluate their
performance. This approach provides a systematic method for generating ansatzes
that maintain a similar structure while incorporating additional parameters,
enhancing their expressiveness and capability. We validate on small molecules
that the diffusion model can help prepare ansatz circuits for VQE.
Related papers
- Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
We introduce an algorithm for data quantization based on the principles of Kashin representation.
Our findings demonstrate that Kashin Quantization achieves competitive or superior quality in model performance.
arXiv Detail & Related papers (2024-04-15T12:38:46Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Quantum Generative Diffusion Model: A Fully Quantum-Mechanical Model for Generating Quantum State Ensemble [40.06696963935616]
We introduce Quantum Generative Diffusion Model (QGDM) as their simple and elegant quantum counterpart.
QGDM exhibits faster convergence than Quantum Generative Adversarial Network (QGAN)
It can achieve 53.02% higher fidelity in mixed-state generation than QGAN.
arXiv Detail & Related papers (2024-01-13T10:56:34Z) - Beyond MP2 initialization for unitary coupled cluster quantum circuits [0.0]
unitary coupled cluster (UCC) ansatz is a promising tool for achieving high-precision results.
We advance the state of the art of UCC simulations by utilizing an efficient sparse wavefunction circuit solver.
arXiv Detail & Related papers (2023-01-13T17:06:50Z) - Study of Adaptative Derivative-Assemble Pseudo-Trotter Ansatzes in VQE
through qiskit API [0.0]
Variational Quantum Algorithms (VQAs) were designed to answer the problem of Quantum Phase Estimation Algorithm.
ADAPT-VQE determines a quasi-optimal ansatz with a minimal number of parameters.
We will compare all of these algorithms on different criterions such as the number of parameters, the accuracy or the number of CNOT gate used on H2 and LiH molecules.
arXiv Detail & Related papers (2022-10-25T16:53:14Z) - TopGen: Topology-Aware Bottom-Up Generator for Variational Quantum
Circuits [26.735857677349628]
Variational Quantum Algorithms (VQA) are promising to demonstrate quantum advantages on near-term devices.
Designing ansatz, a variational circuit with parameterized gates, is of paramount importance for VQA.
We propose a bottom-up approach to generate topology-specific ansatz.
arXiv Detail & Related papers (2022-10-15T04:18:41Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Ansatz-Independent Variational Quantum Classifier [0.0]
We show that variational quantum classifiers (VQCs) fit inside the well-known kernel method.
We also propose a variational circuit realization (VCR) for designing efficient quantum circuits for a given unitary operator.
arXiv Detail & Related papers (2021-02-02T21:25:39Z) - Simulating periodic systems on quantum computer [7.332046127518237]
We present two schemes to improve the accuracy of quantum simulations for extended systems.
One is a modified VQE algorithm, which introduces a unitary transformation of Hartree-Fock orbitals to avoid the complex Hamiltonian.
The second is a Post-VQE approach combining VQE with the quantum subspace expansion approach (VQE/QSE)
arXiv Detail & Related papers (2020-08-07T01:56:32Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.