Quantum Generative Diffusion Model: A Fully Quantum-Mechanical Model for Generating Quantum State Ensemble
- URL: http://arxiv.org/abs/2401.07039v4
- Date: Sat, 3 Aug 2024 15:22:12 GMT
- Title: Quantum Generative Diffusion Model: A Fully Quantum-Mechanical Model for Generating Quantum State Ensemble
- Authors: Chuangtao Chen, Qinglin Zhao, MengChu Zhou, Zhimin He, Zhili Sun, Haozhen Situ,
- Abstract summary: We introduce Quantum Generative Diffusion Model (QGDM) as their simple and elegant quantum counterpart.
QGDM exhibits faster convergence than Quantum Generative Adversarial Network (QGAN)
It can achieve 53.02% higher fidelity in mixed-state generation than QGAN.
- Score: 40.06696963935616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical diffusion models have shown superior generative results. Exploring them in the quantum domain can advance the field of quantum generative learning. This work introduces Quantum Generative Diffusion Model (QGDM) as their simple and elegant quantum counterpart. Through a non-unitary forward process, any target quantum state can be transformed into a completely mixed state that has the highest entropy and maximum uncertainty about the system. A trainable backward process is used to recover the former from the latter. The design requirements for its backward process includes non-unitarity and small parameter count. We introduce partial trace operations to enforce non-unitary and reduce the number of trainable parameters by using a parameter-sharing strategy and incorporating temporal information as an input in the backward process. We present QGDM's resource-efficient version to reduce auxiliary qubits while preserving generative capabilities. QGDM exhibits faster convergence than Quantum Generative Adversarial Network (QGAN) because its adopted convex-based optimization can result in better convergence. The results of comparing it with QGAN demonstrate its effectiveness in generating both pure and mixed quantum states. It can achieve 53.02% higher fidelity in mixed-state generation than QGAN. The results highlight its great potential to tackle challenging quantum generation tasks.
Related papers
- Quantum-enhanced neural networks for quantum many-body simulations [3.8145527526052576]
We propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model quantum many-body wavefunctions.
Numerical simulations demonstrate the scalability and accuracy of the hybrid ansatz in spin systems and quantum chemistry problems.
arXiv Detail & Related papers (2025-01-21T13:44:52Z) - Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.
This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.
The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement [35.436358464279785]
This paper introduces a novel quantum diffusion model designed for Noisy Intermediate-Scale Quantum (NISQ) devices.
By leveraging quantum entanglement and superposition, this approach advances quantum generative learning.
arXiv Detail & Related papers (2024-11-24T20:14:57Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
We introduce a quantum-enhanced VAE (QeVAE) that uses quantum correlations to improve the fidelity over classical VAEs.
We empirically show that the QeVAE outperforms classical models on several classes of quantum states.
Our work paves the way for new applications of quantum generative learning algorithms.
arXiv Detail & Related papers (2023-05-02T16:50:24Z) - Simulating non-unitary dynamics using quantum signal processing with
unitary block encoding [0.0]
We adapt a recent advance in resource-frugal quantum signal processing to explore non-unitary imaginary time evolution on quantum computers.
We test strategies for optimising the circuit depth and the probability of successfully preparing the desired imaginary-time evolved states.
We find that QET-U for non-unitary dynamics is flexible, intuitive and straightforward to use, and suggest ways for delivering quantum advantage in simulation tasks.
arXiv Detail & Related papers (2023-03-10T19:00:33Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors [0.0]
We introduce and analyze a new prototype of quantum GAN (qGAN) employed in continuous-variable quantum computing.
Two CV qGAN models with a quantum and a classical discriminator have been tested to reproduce calorimeter outputs in a reduced size.
arXiv Detail & Related papers (2021-01-26T23:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.