論文の概要: zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning
- arxiv url: http://arxiv.org/abs/2310.02554v4
- Date: Fri, 10 May 2024 19:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 01:12:47.409740
- Title: zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning
- Title(参考訳): zkFL:フェデレートラーニングのためのゼロ知識証明に基づくグラディエントアグリゲーション
- Authors: Zhipeng Wang, Nanqing Dong, Jiahao Sun, William Knottenbelt, Yike Guo,
- Abstract要約: フェデレートラーニング(FL)は、中央アグリゲータのオーケストレーションの下で、複数の分散クライアントが協力してモデルをトレーニングできる機械学習パラダイムである。
従来のFLは、クライアントのコホートを正直に形成する中心集合体の信頼前提に依存している。
我々は、ゼロ知識証明を利用して、トレーニングモデル集約プロセス中に悪意あるアグリゲータの問題に取り組むzkFLを紹介した。
- 参考スコア(独自算出の注目度): 13.086807746204597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator. FL can be a scalable machine learning solution in big data scenarios. Traditional FL relies on the trust assumption of the central aggregator, which forms cohorts of clients honestly. However, a malicious aggregator, in reality, could abandon and replace the client's training models, or insert fake clients, to manipulate the final training results. In this work, we introduce zkFL, which leverages zero-knowledge proofs to tackle the issue of a malicious aggregator during the training model aggregation process. To guarantee the correct aggregation results, the aggregator provides a proof per round, demonstrating to the clients that the aggregator executes the intended behavior faithfully. To further reduce the verification cost of clients, we use blockchain to handle the proof in a zero-knowledge way, where miners (i.e., the participants validating and maintaining the blockchain data) can verify the proof without knowing the clients' local and aggregated models. The theoretical analysis and empirical results show that zkFL achieves better security and privacy than traditional FL, without modifying the underlying FL network structure or heavily compromising the training speed.
- Abstract(参考訳): フェデレートラーニング(FL)は、中央アグリゲータのオーケストレーションの下で、複数の分散クライアントが協力してモデルをトレーニングできる機械学習パラダイムである。
FLは、ビッグデータシナリオにおけるスケーラブルな機械学習ソリューションである。
従来のFLは、クライアントのコホートを正直に形成する中心集合体の信頼前提に依存している。
しかし、悪意のあるアグリゲータは、実際には、クライアントのトレーニングモデルを捨てて置き換えたり、フェイククライアントを挿入したりして、最終的なトレーニング結果を操作することができる。
そこで本研究では,ゼロ知識証明を利用したzkFLを導入し,トレーニングモデル集約プロセスにおける悪意あるアグリゲータの問題に対処する。
正しい集計結果を保証するため、アグリゲータはラウンド毎の証明を提供し、アグリゲータが意図した振る舞いを忠実に実行することを示す。
クライアントの検証コストをさらに削減するために、ブロックチェーンを使用して証明をゼロ知識で処理します。そこでは、マイナ(すなわち、ブロックチェーンデータの検証とメンテナンスを行う参加者)が、クライアントのローカルモデルや集約モデルを知ることなく、証明を検証できます。
理論的解析と実証結果から、zkFLは基礎となるFLネットワーク構造を変更したり、トレーニング速度を著しく向上させることなく、従来のFLよりも優れたセキュリティとプライバシを実現することが示された。
関連論文リスト
- Secure Decentralized Learning with Blockchain [13.795131629462798]
Federated Learning(FL)は、モバイルとIoTデバイスにおける分散機械学習のパラダイムとしてよく知られている。
FLにおける単一障害点問題を回避するため、分散学習(DFL)がモデル集約にピアツーピア通信を使用することが提案されている。
論文 参考訳(メタデータ) (2023-10-10T23:45:17Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - BAFFLE: A Baseline of Backpropagation-Free Federated Learning [71.09425114547055]
フェデレートラーニング(FL)は、分散クライアントがローカルデータを共有せずにサーバモデルをまとめて訓練する一般的な原則である。
我々は、バックプロパゲーションを複数のフォワードプロセスに置き換えて勾配を推定する、BAFFLEと呼ばれる、バックプロパゲーションフリーなフェデレーション学習を開発する。
BAFFLEは、1)メモリ効率が高く、アップロード帯域幅に適しており、2)推論のみのハードウェア最適化とモデル量子化やプルーニングと互換性があり、3)信頼できる実行環境に適している。
論文 参考訳(メタデータ) (2023-01-28T13:34:36Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
フェデレートラーニング(Federated Learning、FL)は、新たな分散ラーニングパラダイムである。
FLの基本的なボトルネックの1つは、分散クライアントと中央サーバの間の通信オーバーヘッドである。
マクロの観点から,最初の通信効率のよいFLトレーニングフレームワークであるFedCliPを提案する。
論文 参考訳(メタデータ) (2023-01-17T09:15:37Z) - FLock: Defending Malicious Behaviors in Federated Learning with
Blockchain [3.0111384920731545]
Federated Learning(FL)は、複数のデータ所有者(クライアント)が協力して機械学習モデルをトレーニングできるようにする、有望な方法だ。
ブロックチェーン上に構築されたセキュアで信頼性の高い分散型FLシステムであるFLockを実現するために,分散台帳技術(DLT)を利用することを提案する。
論文 参考訳(メタデータ) (2022-11-05T06:14:44Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised Federated Learning (FL)は、複数のクライアントがラベル付きデータを共有せずにトレーニングされたモデルを共有することを可能にする。
本研究では,教師なし学習(FedUL)のフェデレーションを提案し,各クライアントのラベル付きデータにラベル付きデータを変換する。
論文 参考訳(メタデータ) (2022-04-07T09:12:00Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。