Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
- URL: http://arxiv.org/abs/2310.02600v2
- Date: Thu, 13 Jun 2024 23:25:37 GMT
- Title: Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
- Authors: Matthew Sainsbury-Dale, Andrew Zammit-Mangion, Jordan Richards, Raphaƫl Huser,
- Abstract summary: We employ graph neural networks to tackle the problem of parameter point estimation from data collected over arbitrary spatial locations.
In addition to extending neural Bayes estimation to irregular spatial data, our architecture leads to substantial computational benefits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Bayes estimators are neural networks that approximate Bayes estimators in a fast and likelihood-free manner. Although they are appealing to use with spatial models, where estimation is often a computational bottleneck, neural Bayes estimators in spatial applications have, to date, been restricted to data collected over a regular grid. These estimators are also currently dependent on a prescribed set of spatial locations, which means that the neural network needs to be re-trained for new data sets; this renders them impractical in many applications and impedes their widespread adoption. In this work, we employ graph neural networks to tackle the important problem of parameter point estimation from data collected over arbitrary spatial locations. In addition to extending neural Bayes estimation to irregular spatial data, our architecture leads to substantial computational benefits, since the estimator can be used with any configuration or number of locations and independent replicates, thus amortising the cost of training for a given spatial model. We also facilitate fast uncertainty quantification by training an accompanying neural Bayes estimator that approximates a set of marginal posterior quantiles. We illustrate our methodology on Gaussian and max-stable processes. Finally, we showcase our methodology on a data set of global sea-surface temperature, where we estimate the parameters of a Gaussian process model in 2161 spatial regions, each containing thousands of irregularly-spaced data points, in just a few minutes with a single graphics processing unit.
Related papers
- A Subsampling Based Neural Network for Spatial Data [0.0]
This article proposes a consistent localized two-layer deep neural network-based regression for spatial data.
We empirically observe the rate of convergence of discrepancy measures between the empirical probability distribution of observed and predicted data, which will become faster for a less smooth spatial surface.
This application is an effective showcase of non-linear spatial regression.
arXiv Detail & Related papers (2024-11-06T02:37:43Z) - Trade-Offs of Diagonal Fisher Information Matrix Estimators [53.35448232352667]
The Fisher information matrix can be used to characterize the local geometry of the parameter space of neural networks.
We examine two popular estimators whose accuracy and sample complexity depend on their associated variances.
We derive bounds of the variances and instantiate them in neural networks for regression and classification.
arXiv Detail & Related papers (2024-02-08T03:29:10Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Graph Neural Processes for Spatio-Temporal Extrapolation [36.01312116818714]
We study the task of extrapolation-temporal processes that generates data at target locations from surrounding contexts in a graph.
Existing methods either use learning-grained models like Neural Networks or statistical approaches like Gaussian for this task.
We propose Spatio Graph Neural Processes (STGNP), a neural latent variable model which commands these capabilities simultaneously.
arXiv Detail & Related papers (2023-05-30T03:55:37Z) - Neural networks for geospatial data [0.0]
NN-GLS is a new neural network estimation algorithm for the non-linear mean in GP models.
We show that NN-GLS admits a representation as a special type of graph neural network (GNN)
Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes.
arXiv Detail & Related papers (2023-04-18T17:52:23Z) - Likelihood-Free Parameter Estimation with Neural Bayes Estimators [0.0]
Neural point estimators are neural networks that map data to parameter point estimates.
We aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software.
arXiv Detail & Related papers (2022-08-27T06:58:16Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
We propose SSN-Fitting to reconstruct a better signed distance field.
SSN-Fitting consists of a semi-signed supervision and a loss-based region sampling strategy.
We conduct experiments to demonstrate that SSN-Fitting achieves state-of-the-art performance under different settings.
arXiv Detail & Related papers (2022-06-14T09:40:17Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.