論文の概要: Mending of Spatio-Temporal Dependencies in Block Adjacency Matrix
- arxiv url: http://arxiv.org/abs/2310.02606v2
- Date: Fri, 30 Aug 2024 08:12:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 20:41:13.161947
- Title: Mending of Spatio-Temporal Dependencies in Block Adjacency Matrix
- Title(参考訳): ブロック隣接行列の時空間依存性の曲げ加工
- Authors: Osama Ahmad, Omer Abdul Jalil, Usman Nazir, Murtaza Taj,
- Abstract要約: 本稿では,時間的依存を考慮に入れた新たなエンドツーエンド学習アーキテクチャを提案する。
提案手法は,SurgVisDomやC2D2などのベンチマークデータセット上での優れた性能を示す。
- 参考スコア(独自算出の注目度): 3.529869282529924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of applications where data dynamically evolves across spatial and temporal dimensions, Graph Neural Networks (GNNs) are often complemented by sequence modeling architectures, such as RNNs and transformers, to effectively model temporal changes. These hybrid models typically arrange the spatial and temporal learning components in series. A pioneering effort to jointly model the spatio-temporal dependencies using only GNNs was the introduction of the Block Adjacency Matrix \(\mathbf{A_B}\) \cite{1}, which was constructed by diagonally concatenating adjacency matrices from graphs at different time steps. This approach resulted in a single graph encompassing complete spatio-temporal data; however, the graphs from different time steps remained disconnected, limiting GNN message-passing to spatially connected nodes only. Addressing this critical challenge, we propose a novel end-to-end learning architecture specifically designed to mend the temporal dependencies, resulting in a well-connected graph. Thus, we provide a framework for the learnable representation of spatio-temporal data as graphs. Our methodology demonstrates superior performance on benchmark datasets, such as SurgVisDom and C2D2, surpassing existing state-of-the-art graph models in terms of accuracy. Our model also achieves significantly lower computational complexity, having far fewer parameters than methods reliant on CLIP and 3D CNN architectures.
- Abstract(参考訳): 空間的および時間的次元にわたってデータを動的に進化させるアプリケーションの世界では、グラフニューラルネットワーク(GNN)はしばしば、時間的変化を効果的にモデル化するために、RNNやトランスフォーマーのようなシーケンスモデリングアーキテクチャによって補完される。
これらのハイブリッドモデルは通常、空間的および時間的学習要素を直列に配置する。
GNNのみを用いて時空間依存性を共同でモデル化する先駆的な試みは、異なる時間ステップでグラフから隣接行列を対角的に連結して構築したBlock Adjacency Matrix \(\mathbf{A_B}\) \cite{1} の導入である。
このアプローチにより、完全な時空間データを含む1つのグラフが得られたが、異なる時間ステップからのグラフは切断され、GNNメッセージパスは空間的に接続されたノードのみに制限された。
この重要な課題に対処するため、時間的依存を補うために特別に設計された新しいエンドツーエンドの学習アーキテクチャを提案する。
そこで我々は,時空間データをグラフとして学習可能な表現のためのフレームワークを提供する。
提案手法は,SurgVisDomやC2D2などのベンチマークデータセットにおいて,既存の最先端グラフモデルを上回る精度で優れた性能を示す。
また,CLIP や 3D CNN アーキテクチャに依存する手法よりもはるかに少ないパラメータで計算複雑性を著しく低減する。
関連論文リスト
- On The Temporal Domain of Differential Equation Inspired Graph Neural
Networks [14.779420473274737]
我々のモデルは、TDE-GNNと呼ばれ、典型的な一階法や二階法を超越した、幅広い時間的ダイナミクスを捉えることができる。
いくつかのグラフベンチマークで予め定義された時間的ダイナミクスを使用するのではなく,我々の手法を用いて時間的依存を学習する利点を実証する。
論文 参考訳(メタデータ) (2024-01-20T01:12:57Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
長距離交通予測は、交通ネットワークで観測される複雑な時間的相関のため、依然として困難な課題である。
本稿では,GRAM-ODE(Graph-based Multi-ODE Neural Networks)と呼ばれるアーキテクチャを提案する。
実世界の6つのデータセットを用いて行った大規模な実験は、最先端のベースラインと比較して、GRAM-ODEの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-30T02:10:42Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
S-Temporal Latent Graph Structure Learning Network (ST-LGSL) を提案する。
このモデルは多層パーセプトロンとK-Nearest Neighborに基づくグラフを用いて、データ全体から潜在グラフトポロジ情報を学習する。
kNNの接地確率行列に基づく依存関係-kNNと類似度メートル法により、ST-LGSLは地理的およびノード類似度に重点を置くトップを集約する。
論文 参考訳(メタデータ) (2022-02-25T10:02:49Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。