論文の概要: Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own
- arxiv url: http://arxiv.org/abs/2310.02635v4
- Date: Fri, 11 Oct 2024 15:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:29:01.877732
- Title: Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own
- Title(参考訳): ファウンデーション・プライオリエンスによる強化学習: エージェントを効果的に学習させる
- Authors: Weirui Ye, Yunsheng Zhang, Haoyang Weng, Xianfan Gu, Shengjie Wang, Tong Zhang, Mengchen Wang, Pieter Abbeel, Yang Gao,
- Abstract要約: 我々は、政策、価値、成功-回帰基盤モデルからのガイダンスとフィードバックを活用するために、RLFP(Reinforcement Learning with Foundation Priors)を提案する。
本フレームワークでは,自動報酬関数を用いてより効率的にエージェントを探索できるファウンデーション誘導型アクター・クリティカル(FAC)アルゴリズムを導入する。
本手法は,実ロボットとシミュレーションの両方において,様々な操作タスクにおいて顕著な性能を実現する。
- 参考スコア(独自算出の注目度): 59.11934130045106
- License:
- Abstract: Reinforcement learning (RL) is a promising approach for solving robotic manipulation tasks. However, it is challenging to apply the RL algorithms directly in the real world. For one thing, RL is data-intensive and typically requires millions of interactions with environments, which are impractical in real scenarios. For another, it is necessary to make heavy engineering efforts to design reward functions manually. To address these issues, we leverage foundation models in this paper. We propose Reinforcement Learning with Foundation Priors (RLFP) to utilize guidance and feedback from policy, value, and success-reward foundation models. Within this framework, we introduce the Foundation-guided Actor-Critic (FAC) algorithm, which enables embodied agents to explore more efficiently with automatic reward functions. The benefits of our framework are threefold: (1) \textit{sample efficient}; (2) \textit{minimal and effective reward engineering}; (3) \textit{agnostic to foundation model forms and robust to noisy priors}. Our method achieves remarkable performances in various manipulation tasks on both real robots and in simulation. Across 5 dexterous tasks with real robots, FAC achieves an average success rate of 86\% after one hour of real-time learning. Across 8 tasks in the simulated Meta-world, FAC achieves 100\% success rates in 7/8 tasks under less than 100k frames (about 1-hour training), outperforming baseline methods with manual-designed rewards in 1M frames. We believe the RLFP framework can enable future robots to explore and learn autonomously in the physical world for more tasks. Visualizations and code are available at \url{https://yewr.github.io/rlfp}.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、ロボット操作タスクを解くための有望なアプローチである。
しかし,RLアルゴリズムを直接実世界に適用することは困難である。
ひとつは、RLはデータ集約型であり、現実のシナリオでは非現実的な環境との数百万のインタラクションを必要とします。
また、報酬関数を手動で設計するためには、高度なエンジニアリング努力が必要である。
これらの問題に対処するために,本論文では基礎モデルを活用している。
我々は、政策、価値、成功-回帰基盤モデルからのガイダンスとフィードバックを活用するために、RLFP(Reinforcement Learning with Foundation Priors)を提案する。
本フレームワークでは,自動報酬関数を用いてより効率的にエージェントを探索できるファウンデーション誘導型アクター・クリティカル(FAC)アルゴリズムを導入する。
1) \textit{sample efficient}; (2) \textit{minimal and effective reward engineering}; (3) \textit{agstic to foundation model form and robust to noisy priors}。
本手法は,実ロボットとシミュレーションの両方において,様々な操作タスクにおいて顕著な性能を実現する。
実ロボットによる5つの巧妙なタスクに対して、FACは1時間のリアルタイム学習で平均86%の成功率を達成する。
シミュレーションされたMeta-worldの8つのタスクにおいて、FACは100kフレーム未満の7/8タスク(約1時間トレーニング)で100倍の成功率を獲得し、1Mフレームで手動で設計した報酬を持つベースラインメソッドを上回っている。
RLFPフレームワークは、将来のロボットがより多くのタスクのために物理的な世界で自律的に探索し学習することができると信じています。
視覚化とコードは \url{https://yewr.github.io/rlfp} で公開されている。
関連論文リスト
- PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) は、視覚言語モデル(VLM)によって形成される報酬を自律的なRLに活用する手法である。
自然言語記述によって指定された実世界の操作タスクにおいて、KAGIは自律的なRLのサンプル効率を改善し、20Kのオンライン微調整ステップでタスク完了を成功させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
本稿では,強化学習による巧妙な操作スキルの学習を効率化するシステムを提案する。
我々のアプローチの主な考え方は、サンプル効率のRLとリプレイバッファブートストラップの最近の進歩の統合である。
本システムでは,実世界の学習サイクルを,模倣に基づくピックアップポリシを通じて学習されたリセットを組み込むことで完遂する。
論文 参考訳(メタデータ) (2023-09-06T19:05:31Z) - Few-Shot Preference Learning for Human-in-the-Loop RL [13.773589150740898]
メタラーニングの成功に触発された我々は、先行タスクデータに対する嗜好モデルを事前訓練し、少数のクエリだけで新しいタスクに迅速に適応する。
メタワールドにおける操作ポリシーのトレーニングに必要なオンラインフィードバックの量を20$times$に削減し,実際のフランカ・パンダロボット上での手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-12-06T23:12:26Z) - Robot Learning of Mobile Manipulation with Reachability Behavior Priors [38.49783454634775]
モバイルマニピュレーション(MM)システムは、非構造化現実環境におけるパーソナルアシスタントの役割を引き継ぐ上で理想的な候補である。
その他の課題として、MMは移動性と操作性の両方を必要とするタスクを実行するために、ロボットの実施形態を効果的に調整する必要がある。
本研究では,アクタ批判的RL手法におけるロボットの到達可能性の先行性の統合について検討した。
論文 参考訳(メタデータ) (2022-03-08T12:44:42Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
シミュレーションで学習したモデルを用いて、単純なタスクプランナの構成要素をグラウンド化することで、見知らぬロボットタスクを達成できるシミュレート・トゥ・リアル・トレーニングのアプローチについて述べる。
シミュレーションでは91.6%から98%,実世界の成功率は10%から80%に増加した。
論文 参考訳(メタデータ) (2020-11-17T15:24:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。