Locality bounds for quantum dynamics at low energy
- URL: http://arxiv.org/abs/2310.02856v3
- Date: Fri, 29 Mar 2024 16:47:21 GMT
- Title: Locality bounds for quantum dynamics at low energy
- Authors: Andrew Osborne, Chao Yin, Andrew Lucas,
- Abstract summary: We discuss the generic slowing down of quantum dynamics in low energy density states of spatially local Hamiltonians.
For certain classes of Hamiltonians, the butterfly velocity" of particle motion at low energies has an upper bound that must scale as $E(2k-1)/2k$, as expected from dimensional analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss the generic slowing down of quantum dynamics in low energy density states of spatially local Hamiltonians. Beginning with quantum walks of a single particle, we prove that for certain classes of Hamiltonians (deformations of lattice-regularized $H\propto p^{2k}$), the ``butterfly velocity" of particle motion at low energies has an upper bound that must scale as $E^{(2k-1)/2k}$, as expected from dimensional analysis. We generalize these results to obtain bounds on the typical velocities of particles in many-body systems with repulsive interactions, where for certain families of Hubbard-like models we obtain similar scaling.
Related papers
- Energy eigenstates of position-dependent mass particles in a spherical
quantum dot [0.0]
We obtain the exact energy spectrum of nonuniform mass particles for a collection of Hamiltonians in a three-dimensional approach to a quantum dot.
The present results are of interest to atomic physics and quantum dot theory.
arXiv Detail & Related papers (2023-11-23T21:34:43Z) - Hyperbolic lattices and two-dimensional Yang-Mills theory [0.0]
Hyperbolic lattices are a new type of synthetic quantum matter emulated in circuit quantum electrodynamics and electric-circuit networks.
We show that moments of the density of states of hyperbolic tight-binding models correspond to expectation values of Wilson loops in the quantum gauge theory.
arXiv Detail & Related papers (2023-09-07T17:15:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Hilbert space fragmentation and slow dynamics in particle-conserving
quantum East models [0.0]
We introduce a hitherto unexplored family of kinetically constrained models featuring a conserved particle number.
We reproduce the logarithmic dynamics observed in the quantum case using a classically simulable cellular automaton.
arXiv Detail & Related papers (2022-10-27T16:50:27Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Measurement of Bell-type inequalities and quantum entanglement from
$\Lambda$-hyperon spin correlations at high energy colliders [0.0]
Spin correlations of $Lambda$-hyperons embedded in the QCD strings formed in high energy collider experiments provide unique insight into their locality and entanglement features.
We show that while the Clauser-Horne-Shimony-Holt inequality is less stringent for such states, they provide a benchmark for quantum-to-classical transitions induced by varying i) the associated hadron, ii) the spin of nucleons,iii) the separation in rapidity between pairs, and iv) the kinematic accessed.
arXiv Detail & Related papers (2021-07-27T18:00:02Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.