Stationarity without mean reversion in improper Gaussian processes
- URL: http://arxiv.org/abs/2310.02877v2
- Date: Wed, 15 May 2024 14:52:50 GMT
- Title: Stationarity without mean reversion in improper Gaussian processes
- Authors: Luca Ambrogioni,
- Abstract summary: We show that it is possible to use improper GP priors with infinite variance to define processes that are stationary but not mean reverting.
By analyzing both synthetic and real data, we demonstrate that these non-positive kernels solve some known pathologies of mean reverting GP regression.
- Score: 6.4322891559626125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The behavior of a GP regression depends on the choice of covariance function. Stationary covariance functions are preferred in machine learning applications. However, (non-periodic) stationary covariance functions are always mean reverting and can therefore exhibit pathological behavior when applied to data that does not relax to a fixed global mean value. In this paper we show that it is possible to use improper GP priors with infinite variance to define processes that are stationary but not mean reverting. To this aim, we use of non-positive kernels that can only be defined in this limit regime. The resulting posterior distributions can be computed analytically and it involves a simple correction of the usual formulas. The main contribution of the paper is the introduction of a large family of smooth non-reverting covariance functions that closely resemble the kernels commonly used in the GP literature (e.g. squared exponential and Mat\'ern class). By analyzing both synthetic and real data, we demonstrate that these non-positive kernels solve some known pathologies of mean reverting GP regression while retaining most of the favorable properties of ordinary smooth stationary kernels.
Related papers
- High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization [83.06112052443233]
This paper studies kernel ridge regression in high dimensions under covariate shifts.
By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance.
For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales.
arXiv Detail & Related papers (2024-06-05T12:03:27Z) - Sample Path Regularity of Gaussian Processes from the Covariance Kernel [25.021782278452005]
Gaussian processes (GPs) are the most common formalism for defining probability distributions over spaces of functions.
We provide necessary and sufficient conditions on the covariance kernel for the sample paths of the corresponding GP to attain a given regularity.
Our results allow for novel and unusually tight characterisations of the sample path regularities of the GPs commonly used in machine learning applications.
arXiv Detail & Related papers (2023-12-22T18:05:18Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Disentangling Derivatives, Uncertainty and Error in Gaussian Process
Models [12.229461458053809]
We showcase how the derivative of a GP model can be used to provide an analytical error propagation formulation.
We analyze the predictive variance and the propagated error terms in a temperature prediction problem from infrared sounding data.
arXiv Detail & Related papers (2020-12-09T10:03:13Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Sequential Gaussian Processes for Online Learning of Nonstationary
Functions [9.997259201098602]
We propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference.
Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data.
arXiv Detail & Related papers (2019-05-24T02:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.