論文の概要: Dual Conic Proxies for AC Optimal Power Flow
- arxiv url: http://arxiv.org/abs/2310.02969v2
- Date: Tue, 26 Mar 2024 14:00:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:00:50.170833
- Title: Dual Conic Proxies for AC Optimal Power Flow
- Title(参考訳): 交流最適潮流用デュアルコニックプロキシ
- Authors: Guancheng Qiu, Mathieu Tanneau, Pascal Van Hentenryck,
- Abstract要約: 既存の学習ベースのアプローチでは、AC-OPFに有効な二重境界は提供できない。
本稿では,AC-OPFの凸緩和のための最適化プロキシをトレーニングすることで,このギャップを解消する。
本稿は、この新しいアーキテクチャと自己教師付き学習スキームを組み合わせることで、データ生成の費用のかかるトレーニングの必要性を軽減する。
- 参考スコア(独自算出の注目度): 16.02181642119643
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, there has been significant interest in the development of machine learning-based optimization proxies for AC Optimal Power Flow (AC-OPF). Although significant progress has been achieved in predicting high-quality primal solutions, no existing learning-based approach can provide valid dual bounds for AC-OPF. This paper addresses this gap by training optimization proxies for a convex relaxation of AC-OPF. Namely, the paper considers a second-order cone (SOC) relaxation of AC-OPF, and proposes \revision{a novel architecture} that embeds a fast, differentiable (dual) feasibility recovery, thus providing valid dual bounds. The paper combines this new architecture with a self-supervised learning scheme, which alleviates the need for costly training data generation. Extensive numerical experiments on medium- and large-scale power grids demonstrate the efficiency and scalability of the proposed methodology.
- Abstract(参考訳): 近年、AC-OPF(AC Optimal Power Flow)のための機械学習ベースの最適化プロキシの開発に大きな関心が寄せられている。
高品質な原始解の予測には大きな進歩があったが、既存の学習に基づくアプローチではAC-OPFに有効な二重境界は得られていない。
本稿では,AC-OPFの凸緩和のための最適化プロキシをトレーニングすることで,このギャップを解消する。
すなわち、AC-OPFの2次円錐(SOC)緩和を考慮し、高速で微分可能な(二重)実現可能性回復を組み込んだ「再配置{a novel architecture}」を提案する。
本稿は、この新しいアーキテクチャと自己教師付き学習スキームを組み合わせることで、データ生成の費用のかかるトレーニングの必要性を軽減する。
中規模および大規模電力網の大規模数値実験により,提案手法の効率性と拡張性を示す。
関連論文リスト
- A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs [57.35402286842029]
本稿では,グローバルクライアントとローカルクライアントの仮想二重配向を構成する新しいアラインドデュアルデュアル(A-FedPD)手法を提案する。
本稿では,A-FedPD方式の非集中型セキュリティコンセンサスに対する効率を包括的に分析する。
論文 参考訳(メタデータ) (2024-09-27T17:00:32Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
Gaussian Process (GP) ベースのChance-Constrained Optimal Flow (CC-OPF) は、電力グリッドにおけるエコノミックディスパッチ(ED)問題のためのオープンソースのPythonコードである。
CC-OPモデルに基づく新しいデータ駆動手法を提案し,複雑性と精度のトレードオフにより大規模な回帰問題を解く。
論文 参考訳(メタデータ) (2023-02-16T17:59:06Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC最適電力フローは電力系統解析における基本的な最適化問題である。
ディープラーニングベースのアプローチは、時間を要するトレーニングプロセスをオフラインで実行するために、集中的に注目を集めています。
本稿では,AC-OPFのためのエンドツーエンドな教師なし学習基盤を提案する。
論文 参考訳(メタデータ) (2022-12-07T22:26:45Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
入力不確実性を伴う潮流方程式をモデル化するために,スパースプロセスとハイブリッドガウスプロセス(GP)フレームワークを用いた高速データ駆動構成を提案する。
提案手法の有効性は,複数のIEEEテストケースに対して,最大2倍の高速かつ高精度な解を示す数値的な研究によって主張する。
論文 参考訳(メタデータ) (2022-08-30T09:27:59Z) - OPF-Learn: An Open-Source Framework for Creating Representative AC
Optimal Power Flow Datasets [0.0]
本稿では,JuliaとPythonのためのOPF-Learnパッケージを開発した。
このフレームワークは、文献で見られる従来の手法に比べて、実現可能な空間全体を代表するデータセットを生成することが示されている。
論文 参考訳(メタデータ) (2021-11-01T19:35:09Z) - Spatial Network Decomposition for Fast and Scalable AC-OPF Learning [14.057864778644776]
提案手法は, 電力網の空間分解を利用した2段階の手法で, 一連の領域として捉える。
短いトレーニング時間の中で、このアプローチはAC-OPFソリューションを非常に高い忠実度と小さな制約違反で予測します。
その結果,ac-opf目標の0.03%以内で実現可能な解を返すために,負荷フロー最適化をシードできることがわかった。
論文 参考訳(メタデータ) (2021-01-17T20:09:11Z) - Load Embeddings for Scalable AC-OPF Learning [46.79747973916068]
AC Optimal Power Flow (AC-OPF) は、電力系統最適化におけるビルディングブロックである。
近年の研究では,AC-OPFの高精度な近似にディープラーニングが有効であることが示されている。
本稿では,これらのスケーラビリティの限界に対処し,3ステップアプローチによるロード埋め込み方式を提案する。
論文 参考訳(メタデータ) (2021-01-11T15:28:38Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPFは、多くの電力システムアプリケーションにおいて重要なビルディングブロックである。
本稿では, 再生可能エネルギーの普及にともなって, AC-OPFの効率的な近似を実現するための深層学習について検討する。
論文 参考訳(メタデータ) (2020-06-29T20:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。