Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models
- URL: http://arxiv.org/abs/2310.03123v1
- Date: Wed, 4 Oct 2023 19:30:49 GMT
- Title: Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models
- Authors: Zihao Lin, Yan Sun, Yifan Shi, Xueqian Wang, Lifu Huang, Li Shen,
Dacheng Tao
- Abstract summary: We propose Federated Black-Box Prompt Tuning (Fed-BBPT) to optimally harness each local dataset.
Fed-BBPT capitalizes on a central server that aids local users in collaboratively training a prompt generator through regular aggregation.
Relative to extensive fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM storage and fine-tuning on local machines.
- Score: 62.838689691468666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the blowout development of pre-trained models (PTMs), the efficient
tuning of these models for diverse downstream applications has emerged as a
pivotal research concern. Although recent investigations into prompt tuning
have provided promising avenues, three salient challenges persist: (1) memory
constraint: the continuous growth in the size of open-source PTMs renders
fine-tuning, even a fraction of their parameters, challenging for many
practitioners. (2) model privacy: existing PTMs often function as public API
services, with their parameters inaccessible for effective or tailored
fine-tuning. (3) data privacy: the fine-tuning of PTMs necessitates
high-quality datasets, which are typically localized and not shared to public.
To optimally harness each local dataset while navigating memory constraints and
preserving privacy, we propose Federated Black-Box Prompt Tuning (Fed-BBPT).
This innovative approach eschews reliance on parameter architectures and
private dataset access, instead capitalizing on a central server that aids
local users in collaboratively training a prompt generator through regular
aggregation. Local users leverage API-driven learning via a zero-order
optimizer, obviating the need for PTM deployment. Relative to extensive
fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM
storage and fine-tuning on local machines, tapping into comprehensive,
high-quality, yet private training datasets. A thorough evaluation across 40
datasets spanning CV and NLP tasks underscores the robustness of our proposed
model.
Related papers
- FedSpaLLM: Federated Pruning of Large Language Models [8.45879077052023]
Large Language Models (LLMs) achieve state-of-the-art performance but are challenging to deploy due to their high computational and storage demands.
We propose FedSpaLLM, the first federated learning framework designed specifically for pruning LLMs.
arXiv Detail & Related papers (2024-10-18T20:33:12Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Share Your Secrets for Privacy! Confidential Forecasting with Vertical Federated Learning [5.584904689846748]
Key challenges to address in manufacturing include data privacy and over-fitting on small and noisy datasets.
We propose 'Secret-shared Time Series Forecasting with VFL', a novel framework that exhibits the following key features.
Our results demonstrate that STV's forecasting accuracy is comparable to those of centralized approaches.
arXiv Detail & Related papers (2024-05-31T12:27:38Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Profit: Benchmarking Personalization and Robustness Trade-off in
Federated Prompt Tuning [40.16581292336117]
In many applications of federated learning (FL), clients desire models that are personalized using their local data, yet are also robust in the sense that they retain general global knowledge.
It is critical to understand how to navigate this personalization vs robustness trade-off when designing federated systems.
arXiv Detail & Related papers (2023-10-06T23:46:33Z) - FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language
Models [22.29061931122386]
Pre-trained language models (PLM) have revolutionized the NLP landscape, achieving stellar performances across diverse tasks.
This paper introduces Federated Black-box Prompt Tuning (FedBPT), a framework designed to address these challenges.
arXiv Detail & Related papers (2023-10-02T16:43:14Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones.
Recent pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL.
We argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring.
arXiv Detail & Related papers (2023-03-13T17:59:02Z) - Ranking and Tuning Pre-trained Models: A New Paradigm of Exploiting
Model Hubs [136.4492678691406]
We propose a new paradigm of exploiting model hubs by ranking and tuning pre-trained models.
The best ranked PTM can be fine-tuned and deployed if we have no preference for the model's architecture.
The tuning part introduces a novel method for multiple PTMs tuning, which surpasses dedicated methods.
arXiv Detail & Related papers (2021-10-20T12:59:23Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.