Label Privacy in Split Learning for Large Models with Parameter-Efficient Training
- URL: http://arxiv.org/abs/2412.16669v1
- Date: Sat, 21 Dec 2024 15:32:03 GMT
- Title: Label Privacy in Split Learning for Large Models with Parameter-Efficient Training
- Authors: Philip Zmushko, Marat Mansurov, Ruslan Svirschevski, Denis Kuznedelev, Max Ryabinin, Aleksandr Beznosikov,
- Abstract summary: We search for a way to fine-tune models over an API while keeping the labels private.
We propose P$3$EFT, a multi-party split learning algorithm that takes advantage of existing PEFT properties to maintain privacy at a lower performance overhead.
- Score: 51.28799334394279
- License:
- Abstract: As deep learning models become larger and more expensive, many practitioners turn to fine-tuning APIs. These web services allow fine-tuning a model between two parties: the client that provides the data, and the server that hosts the model. While convenient, these APIs raise a new concern: the data of the client is at risk of privacy breach during the training procedure. This challenge presents an important practical case of vertical federated learning, where the two parties perform parameter-efficient fine-tuning (PEFT) of a large model. In this study, we systematically search for a way to fine-tune models over an API while keeping the labels private. We analyze the privacy of LoRA, a popular approach for parameter-efficient fine-tuning when training over an API. Using this analysis, we propose P$^3$EFT, a multi-party split learning algorithm that takes advantage of existing PEFT properties to maintain privacy at a lower performance overhead. To validate our algorithm, we fine-tune DeBERTa-v2-XXLarge, Flan-T5 Large and LLaMA-2 7B using LoRA adapters on a range of NLP tasks. We find that P$^3$EFT is competitive with existing privacy-preserving methods in multi-party and two-party setups while having higher accuracy.
Related papers
- Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning [21.27813247914949]
We propose Robust-HDP, which efficiently estimates the true noise level in clients model updates.
It improves utility and convergence speed, while being safe to the clients that may maliciously send falsified privacy parameter to server.
arXiv Detail & Related papers (2024-06-05T17:41:42Z) - DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation [15.023077875990614]
Federated learning (FL) allows clients to collaboratively train a global model without sharing their local data with a server.
Differential privacy (DP) addresses such leakage by providing formal privacy guarantees, with mechanisms that add randomness to the clients' contributions.
We propose an adaptation method that can be combined with differential privacy and call it DP-DyLoRA.
arXiv Detail & Related papers (2024-05-10T10:10:37Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models [62.838689691468666]
We propose Federated Black-Box Prompt Tuning (Fed-BBPT) to optimally harness each local dataset.
Fed-BBPT capitalizes on a central server that aids local users in collaboratively training a prompt generator through regular aggregation.
Relative to extensive fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM storage and fine-tuning on local machines.
arXiv Detail & Related papers (2023-10-04T19:30:49Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - PFSL: Personalized & Fair Split Learning with Data & Label Privacy for
thin clients [0.5144809478361603]
PFSL is a new framework of distributed split learning where a large number of thin clients perform transfer learning in parallel.
We implement a lightweight step of personalization of client models to provide high performance for their respective data distributions.
Our accuracy far exceeds that of current algorithms SL and is very close to that of centralized learning on several real-life benchmarks.
arXiv Detail & Related papers (2023-03-19T10:38:29Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Petals: Collaborative Inference and Fine-tuning of Large Models [78.37798144357977]
Many NLP tasks benefit from using large language models (LLMs) that often have more than 100 billion parameters.
With the release of BLOOM-176B and OPT-175B, everyone can download pretrained models of this scale.
We propose Petals $-$ a system for inference and fine-tuning of large models collaboratively by joining the resources of multiple parties.
arXiv Detail & Related papers (2022-09-02T17:38:03Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.