論文の概要: Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
- arxiv url: http://arxiv.org/abs/2310.03234v5
- Date: Tue, 24 Sep 2024 22:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 10:12:15.542319
- Title: Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
- Title(参考訳): 非滑らか弱凸有限和結合合成最適化
- Authors: Quanqi Hu, Dixian Zhu, Tianbao Yang,
- Abstract要約: 本稿では,新しい合成最適化問題である$linebf n$on-underline underlinebf sakly underlinebf c$ompositional $underlineunderlineについて検討する。
- 参考スコア(独自算出の注目度): 42.861002114813864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates new families of compositional optimization problems, called $\underline{\bf n}$on-$\underline{\bf s}$mooth $\underline{\bf w}$eakly-$\underline{\bf c}$onvex $\underline{\bf f}$inite-sum $\underline{\bf c}$oupled $\underline{\bf c}$ompositional $\underline{\bf o}$ptimization (NSWC FCCO). There has been a growing interest in FCCO due to its wide-ranging applications in machine learning and AI, as well as its ability to address the shortcomings of stochastic algorithms based on empirical risk minimization. However, current research on FCCO presumes that both the inner and outer functions are smooth, limiting their potential to tackle a more diverse set of problems. Our research expands on this area by examining non-smooth weakly-convex FCCO, where the outer function is weakly convex and non-decreasing, and the inner function is weakly-convex. We analyze a single-loop algorithm and establish its complexity for finding an $\epsilon$-stationary point of the Moreau envelop of the objective function. Additionally, we also extend the algorithm to solving novel non-smooth weakly-convex tri-level finite-sum coupled compositional optimization problems, which feature a nested arrangement of three functions. Lastly, we explore the applications of our algorithms in deep learning for two-way partial AUC maximization and multi-instance two-way partial AUC maximization, using empirical studies to showcase the effectiveness of the proposed algorithms.
- Abstract(参考訳): 本稿では,新しい合成最適化問題である$\underline{\bf n}$on-$\underline{\bf s}$mooth $\underline{\bf w}$eakly-$\underline{\bf c}$onvex $\underline{\bf f}$inite-sum $\underline{\bf c}$oupled $\underline{\bf c}$ompositional $\underline{\bf o}$ptimization (NSWC FCCO)について検討する。
機械学習とAIの幅広い応用と、経験的リスク最小化に基づく確率的アルゴリズムの欠点に対処する能力により、FCCOへの関心が高まっている。
しかし、FCCOの最近の研究は、内部関数と外部関数の両方が滑らかであり、より多様な問題に取り組む可能性を制限すると仮定している。
本研究は, 外部関数が弱凸で非減少し, 内関数が弱凸である非滑らかなFCCOを調べることにより, この領域を拡大する。
単ループアルゴリズムを解析し、目的関数のモロー展開の$\epsilon$-stationary点を求める複雑性を確立する。
さらに,3つの関数のネスト配置を特徴とする,非滑らかな弱凸三値有限サム結合合成最適化問題にもアルゴリズムを拡張した。
最後に,2方向部分AUC最大化と多方向部分AUC最大化のためのディープラーニングへのアルゴリズムの適用について,実験的検討を用いて検討した。
関連論文リスト
- Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization [77.3396841985172]
我々は、構造化された非極小最適化問題の解法として、2時間勾配上昇(TTGDA)を統一的に解析する。
我々の貢献はTTGDAアルゴリズムを設計することであり、設定を超えて効果的です。
論文 参考訳(メタデータ) (2024-08-21T20:14:54Z) - Two-Timescale Optimization Framework for Decentralized Linear-Quadratic Optimal Control [3.746304628644379]
凸パラメータ化凸境界不確実性を考慮した$mathcal$-guaranteed linear decentralized-quadratic optimal controlについて検討した。
論文 参考訳(メタデータ) (2024-06-17T03:17:33Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - Stochastic Nested Compositional Bi-level Optimization for Robust Feature
Learning [11.236838268731804]
ネストされた二段階最適化問題を解くアルゴリズムを開発し,解析する。
提案アルゴリズムは,行列複雑性やミニバッチに依存しない。
論文 参考訳(メタデータ) (2023-07-11T15:52:04Z) - Decentralized Weakly Convex Optimization Over the Stiefel Manifold [28.427697270742947]
我々は分散環境でスティーフェル多様体に焦点をあて、$nMn log-1)$のエージェントの連結ネットワークをテストする。
そこで本研究では,nMn log-1 以下の自然ステーションを強制的に強制する分散下位段階法 (DRSM)$ という手法を提案する。
論文 参考訳(メタデータ) (2023-03-31T02:56:23Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
本稿では,これらのミニマックス問題の解法として,適応最小最適化アルゴリズム(AdaFGDA)を提案する。
運動量に基づく還元および局所SGD技術を構築し、様々な適応学習率を柔軟に組み込む。
論文 参考訳(メタデータ) (2022-11-14T12:32:18Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - Projection-Free Algorithm for Stochastic Bi-level Optimization [17.759493152879013]
本研究は、目的関数が他の最適化問題に依存する二段階最適化問題を解く最初のプロジェクションフリーアルゴリズムを示す。
提案されている$textbfStochastic $textbfF$rank-$textbfW$olfe ($textbfSCFW$)は、凸目的に対して$mathcalO(epsilon-2)$のサンプル複雑性を実現するために示されている。
論文 参考訳(メタデータ) (2021-10-22T11:49:15Z) - Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results
and Construction [18.65143269806133]
我々は、個々のコンポーネントごとに勾配および近位オラクルにアクセスできる近位インクリメンタルファーストオーダー(PIFO)アルゴリズムを検討する。
古典的な例の三対角行列を$n$群に分割する逆問題を構築するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-03-15T11:20:31Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
双レベル最適化は、2レベル構造を示す問題のクラスである。
このような二段階問題に対処するための2段階近似(TTSA)アルゴリズムを提案する。
本稿では,TTSAフレームワークの特殊な事例として,2段階の自然なアクター・クリティカルポリシー最適化アルゴリズムが有用であることを示す。
論文 参考訳(メタデータ) (2020-07-10T05:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。