論文の概要: Procedural Text Mining with Large Language Models
- arxiv url: http://arxiv.org/abs/2310.03376v1
- Date: Thu, 5 Oct 2023 08:27:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-06 17:06:21.353049
- Title: Procedural Text Mining with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた手続きテキストマイニング
- Authors: Anisa Rula and Jennifer D'Souza
- Abstract要約: 本研究では,非構造化PDFテキストからの手順を段階的に問合せ方式で抽出する問題に対処する。
我々は、現在最先端のGPT-4(Generative Pre-trained Transformer 4)モデルを活用し、文脈内学習の2つのバリエーションを伴っている。
この結果は、このアプローチの約束と、コンテキスト内学習のカスタマイズの価値の両方を強調している。
- 参考スコア(独自算出の注目度): 0.21756081703275998
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in the field of Natural Language Processing, particularly
the development of large-scale language models that are pretrained on vast
amounts of knowledge, are creating novel opportunities within the realm of
Knowledge Engineering. In this paper, we investigate the usage of large
language models (LLMs) in both zero-shot and in-context learning settings to
tackle the problem of extracting procedures from unstructured PDF text in an
incremental question-answering fashion. In particular, we leverage the current
state-of-the-art GPT-4 (Generative Pre-trained Transformer 4) model,
accompanied by two variations of in-context learning that involve an ontology
with definitions of procedures and steps and a limited number of samples of
few-shot learning. The findings highlight both the promise of this approach and
the value of the in-context learning customisations. These modifications have
the potential to significantly address the challenge of obtaining sufficient
training data, a hurdle often encountered in deep learning-based Natural
Language Processing techniques for procedure extraction.
- Abstract(参考訳): 自然言語処理分野の最近の進歩、特に膨大な知識に基づいて事前訓練された大規模言語モデルの開発は、知識工学の領域において新たな機会を生み出している。
本稿では,ゼロショットとインコンテクストの学習環境における大規模言語モデル (LLM) の利用について検討し,非構造化PDFテキストから段階的な質問応答方式でプロシージャを抽出する問題に対処する。
特に,現在最先端の GPT-4 (Generative Pre-trained Transformer 4) モデルと,手順定義と手順定義を含むオントロジーを含む2種類のコンテキスト内学習と,少数ショット学習の限られたサンプルを併用する。
この結果は、このアプローチの約束と、コンテキスト内学習のカスタマイズの価値の両方を強調している。
これらの修正は、十分なトレーニングデータを得るという課題に対処する可能性があり、これは、深層学習に基づく手続き抽出のための自然言語処理技術でしばしば発生するハードルである。
関連論文リスト
- Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - On the cross-lingual transferability of multilingual prototypical models
across NLU tasks [2.44288434255221]
教師付きディープラーニングベースのアプローチはタスク指向のダイアログに適用され、限られたドメインや言語アプリケーションに有効であることが証明されている。
実際には、これらのアプローチはドメイン駆動設計とアンダーリソース言語の欠点に悩まされている。
本稿では,原型ニューラルネットワークと多言語トランスフォーマーモデルを用いた相乗的少数ショット学習の言語間変換可能性について検討する。
論文 参考訳(メタデータ) (2022-07-19T09:55:04Z) - Leveraging pre-trained language models for conversational information
seeking from text [2.8425118603312]
本稿では,プロセス記述文書から情報抽出の問題に対処するために,文脈内学習と事前学習言語表現モデルの使用について検討する。
その結果、このアプローチの可能性と、コンテキスト内学習のカスタマイズの有用性が浮き彫りになった。
論文 参考訳(メタデータ) (2022-03-31T09:00:46Z) - Recent Advances in Natural Language Processing via Large Pre-Trained
Language Models: A Survey [67.82942975834924]
BERTのような大規模で事前訓練された言語モデルは、自然言語処理(NLP)の分野を大きく変えた。
本稿では,これらの大規模言語モデルを用いたNLPタスクの事前学習,微調整,プロンプト,テキスト生成といった手法を用いた最近の研究について紹介する。
論文 参考訳(メタデータ) (2021-11-01T20:08:05Z) - A Survey on Recent Approaches for Natural Language Processing in
Low-Resource Scenarios [30.391291221959545]
ディープニューラルネットワークと巨大な言語モデルが、自然言語アプリケーションにおいて一様化しつつある。
大量のトレーニングデータを必要とすることで知られているため、低リソース環境でのパフォーマンスを改善するための作業が増えている。
ニューラルモデルに対する最近の根本的な変化と、一般的なプレトレインおよびファインチューンパラダイムにより、低リソースの自然言語処理に対する有望なアプローチを調査した。
論文 参考訳(メタデータ) (2020-10-23T11:22:01Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - Neural Language Generation: Formulation, Methods, and Evaluation [13.62873478165553]
ニューラルネットワークに基づく生成モデリングの最近の進歩は、人間とシームレスに会話できるコンピュータシステムの実現への期待を再燃させた。
大規模データセットでトレーニングされた高容量ディープラーニングモデルは、明示的な監視信号の欠如にもかかわらず、データのパターンを学習する非並列的な能力を示している。
これらの生成モデルが生成するテキストの品質を評価する標準的な方法は存在しないため、フィールドの進行に深刻なボトルネックが生じる。
論文 参考訳(メタデータ) (2020-07-31T00:08:28Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。