A Complementary Global and Local Knowledge Network for Ultrasound
denoising with Fine-grained Refinement
- URL: http://arxiv.org/abs/2310.03402v1
- Date: Thu, 5 Oct 2023 09:12:34 GMT
- Title: A Complementary Global and Local Knowledge Network for Ultrasound
denoising with Fine-grained Refinement
- Authors: Zhenyu Bu, Kai-Ni Wang, Fuxing Zhao, Shengxiao Li, Guang-Quan Zhou
- Abstract summary: Ultrasound imaging serves as an effective and non-invasive diagnostic tool commonly employed in clinical examinations.
Existing methods for speckle noise reduction induce excessive image smoothing or fail to preserve detailed information adequately.
We propose a complementary global and local knowledge network for ultrasound denoising with fine-grained refinement.
- Score: 0.7424725048947504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasound imaging serves as an effective and non-invasive diagnostic tool
commonly employed in clinical examinations. However, the presence of speckle
noise in ultrasound images invariably degrades image quality, impeding the
performance of subsequent tasks, such as segmentation and classification.
Existing methods for speckle noise reduction frequently induce excessive image
smoothing or fail to preserve detailed information adequately. In this paper,
we propose a complementary global and local knowledge network for ultrasound
denoising with fine-grained refinement. Initially, the proposed architecture
employs the L-CSwinTransformer as encoder to capture global information,
incorporating CNN as decoder to fuse local features. We expand the resolution
of the feature at different stages to extract more global information compared
to the original CSwinTransformer. Subsequently, we integrate Fine-grained
Refinement Block (FRB) within the skip-connection stage to further augment
features. We validate our model on two public datasets, HC18 and BUSI.
Experimental results demonstrate that our model can achieve competitive
performance in both quantitative metrics and visual performance. Our code will
be available at https://github.com/AAlkaid/USDenoising.
Related papers
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging.
This work presents a loss function that leverages the intrinsic multi-scale nature of the Gray-Level-Co-occurrence Matrix (GLCM)
Our approach also introduces a self-attention layer that dynamically aggregates the multi-scale texture information extracted from the images.
arXiv Detail & Related papers (2024-03-25T11:28:52Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - Multi-Level Global Context Cross Consistency Model for Semi-Supervised
Ultrasound Image Segmentation with Diffusion Model [0.0]
We propose a framework that uses images generated by a Latent Diffusion Model (LDM) as unlabeled images for semi-supervised learning.
Our approach enables the effective transfer of probability distribution knowledge to the segmentation network, resulting in improved segmentation accuracy.
arXiv Detail & Related papers (2023-05-16T14:08:24Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.