Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems
- URL: http://arxiv.org/abs/2310.03579v1
- Date: Thu, 5 Oct 2023 14:59:19 GMT
- Title: Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems
- Authors: Trang Nguyen, Alexander Tong, Kanika Madan, Yoshua Bengio and Dianbo
Liu
- Abstract summary: We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs.
Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost.
- Score: 87.45270862120866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding causal relationships within Gene Regulatory Networks (GRNs) is
essential for unraveling the gene interactions in cellular processes. However,
causal discovery in GRNs is a challenging problem for multiple reasons
including the existence of cyclic feedback loops and uncertainty that yields
diverse possible causal structures. Previous works in this area either ignore
cyclic dynamics (assume acyclic structure) or struggle with scalability. We
introduce Swift-DynGFN as a novel framework that enhances causal structure
learning in GRNs while addressing scalability concerns. Specifically,
Swift-DynGFN exploits gene-wise independence to boost parallelization and to
lower computational cost. Experiments on real single-cell RNA velocity and
synthetic GRN datasets showcase the advancement in learning causal structure in
GRNs and scalability in larger systems.
Related papers
- Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI [2.0755366440393743]
We develop a mathematical model of gene-perceptron using a dual-layered transcription-translation chemical reaction model.
We perform stability analysis for each gene-perceptron within the fully-connected GRNN sub network to determine temporal as well as stable concentration outputs.
arXiv Detail & Related papers (2023-09-14T21:37:38Z) - CUTS+: High-dimensional Causal Discovery from Irregular Time-series [13.84185941100574]
We propose CUTS+, which is built on the Granger-causality-based causal discovery method CUTS.
We show that CUTS+ largely improves the causal discovery performance on high-dimensional data with different types of irregular sampling.
arXiv Detail & Related papers (2023-05-10T04:20:36Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
Gene regulatory networks (GRN) describe interactions between genes and their products that control gene expression and cellular function.
Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both.
In this paper we leverage the fact that it is possible to estimate the "velocity" of gene expression with RNA velocity techniques to develop an approach that addresses both challenges.
arXiv Detail & Related papers (2023-02-08T16:36:40Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - Generative Adversarial Method Based on Neural Tangent Kernels [13.664682865991255]
We propose a new generative algorithm called generative adversarial NTK (GA-NTK)
GA-NTK can generate images comparable to those by GANs but is much easier to train under various conditions.
We conduct extensive experiments on real-world datasets, and the results show that GA-NTK can generate images comparable to those by GANs but is much easier to train under various conditions.
arXiv Detail & Related papers (2022-04-08T14:17:46Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
Delays in protein synthesis cause a confounding effect when constructing Gene Regulatory Networks (GRNs) from RNA-sequencing time-series data.
We present a model which incorporates translation delays by combining mechanistic equations and Bayesian approaches to fit to experimental data.
arXiv Detail & Related papers (2020-10-06T09:03:34Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
It is known that the current graph neural networks (GNNs) are difficult to make themselves deep due to the problem known as over-smoothing.
Multi-scale GNNs are a promising approach for mitigating the over-smoothing problem.
We derive the optimization and generalization guarantees of transductive learning algorithms that include multi-scale GNNs.
arXiv Detail & Related papers (2020-06-15T17:06:17Z) - Gated Graph Recurrent Neural Networks [176.3960927323358]
We introduce Graph Recurrent Neural Networks (GRNNs) as a general learning framework for graph processes.
To address the problem of vanishing gradients, we put forward GRNNs with three different gating mechanisms: time, node and edge gates.
The numerical results also show that GRNNs outperform GNNs and RNNs, highlighting the importance of taking both the temporal and graph structures of a graph process into account.
arXiv Detail & Related papers (2020-02-03T22:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.