Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI
- URL: http://arxiv.org/abs/2310.04424v1
- Date: Thu, 14 Sep 2023 21:37:38 GMT
- Title: Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI
- Authors: Adrian Ratwatte, Samitha Somathilaka, Sasitharan Balasubramaniam and
Assaf A. Gilad
- Abstract summary: We develop a mathematical model of gene-perceptron using a dual-layered transcription-translation chemical reaction model.
We perform stability analysis for each gene-perceptron within the fully-connected GRNN sub network to determine temporal as well as stable concentration outputs.
- Score: 2.0755366440393743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Gene Regulatory Network (GRN) of biological cells governs a number of key
functionalities that enables them to adapt and survive through different
environmental conditions. Close observation of the GRN shows that the structure
and operational principles resembles an Artificial Neural Network (ANN), which
can pave the way for the development of Biological Artificial Intelligence. In
particular, a gene's transcription and translation process resembles a
sigmoidal-like property based on transcription factor inputs. In this paper, we
develop a mathematical model of gene-perceptron using a dual-layered
transcription-translation chemical reaction model, enabling us to transform a
GRN into a Gene Regulatory Neural Network (GRNN). We perform stability analysis
for each gene-perceptron within the fully-connected GRNN sub network to
determine temporal as well as stable concentration outputs that will result in
reliable computing performance. We focus on a non-linear classifier application
for the GRNN, where we analyzed generic multi-layer GRNNs as well as E.Coli
GRNN that is derived from trans-omic experimental data. Our analysis found that
varying the parameters of the chemical reactions can allow us shift the
boundaries of the classification region, laying the platform for programmable
GRNNs that suit diverse application requirements.
Related papers
- Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
This study explores the use of Graph Neural Networks (GNNs), a powerful approach for modeling graph-structured data like Gene Regulatory Networks (GRNs)
The model's adeptness in accurately predicting regulatory interactions and pinpointing key regulators is attributed to advanced attention mechanisms.
The integration of GNNs in GRN research is set to pioneer developments in personalized medicine, drug discovery, and our grasp of biological systems.
arXiv Detail & Related papers (2024-09-20T17:16:14Z) - Wet TinyML: Chemical Neural Network Using Gene Regulation and Cell
Plasticity [5.9659016963634315]
Wet TinyML is a form of chemical-based neural network based on gene regulatory network.
GRNNs can be used for conventional computing by employing an application-based search process.
We show that through the directed cell plasticity, we can extract the mathematical regression evolution enabling it to match to dynamic system applications.
arXiv Detail & Related papers (2024-03-13T14:00:18Z) - Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
We show how physics-informed neural networks (PINNs) can be used to infer the parameters of predictive, dynamical GRNs.
Specifically we study GRNs that exhibit bifurcation behavior and can therefore model cell differentiation.
arXiv Detail & Related papers (2024-01-14T21:43:10Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs.
Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost.
arXiv Detail & Related papers (2023-10-05T14:59:19Z) - Inferring Gene Regulatory Neural Networks for Bacterial Decision Making
in Biofilms [4.459301404374565]
Bacterial cells are sensitive to a range of external signals used to learn the environment.
An inherited Gene Regulatory Neural Network (GRNN) behavior enables the cellular decision-making.
GRNNs can perform computational tasks for bio-hybrid computing systems.
arXiv Detail & Related papers (2023-01-10T22:07:33Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Net is a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems.
Our application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes.
arXiv Detail & Related papers (2022-10-18T21:15:10Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
Delays in protein synthesis cause a confounding effect when constructing Gene Regulatory Networks (GRNs) from RNA-sequencing time-series data.
We present a model which incorporates translation delays by combining mechanistic equations and Bayesian approaches to fit to experimental data.
arXiv Detail & Related papers (2020-10-06T09:03:34Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.