論文の概要: SCVCNet: Sliding cross-vector convolution network for cross-task and
inter-individual-set EEG-based cognitive workload recognition
- arxiv url: http://arxiv.org/abs/2310.03749v1
- Date: Thu, 21 Sep 2023 13:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-15 14:58:12.754679
- Title: SCVCNet: Sliding cross-vector convolution network for cross-task and
inter-individual-set EEG-based cognitive workload recognition
- Title(参考訳): SCVCNet: クロスタスクと個人間脳波に基づく認知負荷認識のためのクロスベクトル畳み込みネットワーク
- Authors: Qi Wang, Li Chen, Zhiyuan Zhan, Jianhua Zhang, Zhong Yin
- Abstract要約: 本稿では,脳波パターンを利用した認知作業量認識装置の汎用的手法を提案する。
パワースペクトル密度の微細な周波数構造を解析することにより,脳波のタスクおよび個々のセットに関する干渉を除去するSCVCNetというニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 15.537230343119875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a generic approach for applying the cognitive workload
recognizer by exploiting common electroencephalogram (EEG) patterns across
different human-machine tasks and individual sets. We propose a neural network
called SCVCNet, which eliminates task- and individual-set-related interferences
in EEGs by analyzing finer-grained frequency structures in the power spectral
densities. The SCVCNet utilizes a sliding cross-vector convolution (SCVC)
operation, where paired input layers representing the theta and alpha power are
employed. By extracting the weights from a kernel matrix's central row and
column, we compute the weighted sum of the two vectors around a specified scalp
location. Next, we introduce an inter-frequency-point feature integration
module to fuse the SCVC feature maps. Finally, we combined the two modules with
the output-channel pooling and classification layers to construct the model. To
train the SCVCNet, we employ the regularized least-square method with ridge
regression and the extreme learning machine theory. We validate its performance
using three databases, each consisting of distinct tasks performed by
independent participant groups. The average accuracy (0.6813 and 0.6229) and F1
score (0.6743 and 0.6076) achieved in two different validation paradigms show
partially higher performance than the previous works. All features and
algorithms are available on website:https://github.com/7ohnKeats/SCVCNet.
- Abstract(参考訳): 本稿では,人間-機械のタスクや個々のセットにまたがる共通脳波(eeg)パターンを活用し,認知作業負荷認識器を適用するための汎用的手法を提案する。
パワースペクトル密度の微細な周波数構造を解析することにより,脳波のタスクおよび個別セット関連干渉を除去するSCVCNetを提案する。
SCVCNetはスライディング・クロスベクター・コンボリューション(SCVC)演算を使用し、セタとアルファパワーを表すペア入力層が使用される。
カーネル行列の中央行と列から重みを抽出し、指定された頭皮位置の周りの2つのベクトルの重み付き和を計算する。
次に,scvc特徴マップを融合する周波数間特徴統合モジュールを提案する。
最後に、2つのモジュールを出力チャネルプーリングと分類層と組み合わせてモデルを構築した。
SCVCNetの学習には、尾根回帰と極学習機械理論を用いた正規化最小二乗法を用いる。
3つのデータベースを用いて、それぞれが独立した参加者グループによって実行される個別のタスクからなる性能を検証する。
平均精度 (0.6813 と 0.6229) と F1 スコア (0.6743 と 0.6076) は2つの異なる検証パラダイムで達成された。
すべての機能とアルゴリズムは、Webサイト(https://github.com/7ohnKeats/SCVCNet)で入手できる。
関連論文リスト
- Y-CA-Net: A Convolutional Attention Based Network for Volumetric Medical Image Segmentation [47.12719953712902]
差別的なローカル機能は、注目ベースのVSメソッドのパフォーマンスの鍵となるコンポーネントである。
コンボリューションエンコーダ分岐をトランスフォーマーバックボーンに組み込んで,局所的特徴と大域的特徴を並列に抽出する。
Y-CT-Netは、複数の医療セグメンテーションタスクにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-10-01T18:50:45Z) - 4D ASR: Joint Beam Search Integrating CTC, Attention, Transducer, and Mask Predict Decoders [53.297697898510194]
我々は、4つのデコーダが同一のエンコーダを共有する共同モデリング手法を提案し、これを4Dモデリングと呼ぶ。
4Dモデルを効率的に訓練するために,マルチタスク学習を安定化させる2段階のトレーニング戦略を導入する。
さらに,3つのデコーダを組み合わせることで,新しい1パスビーム探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-05T05:18:20Z) - Community detection in complex networks via node similarity, graph
representation learning, and hierarchical clustering [4.264842058017711]
コミュニティ検出は、実際のグラフを分析する上で重要な課題である。
この記事では,この課題に対処する3つの新しい階層型フレームワークを提案する。
ブロックモデルグラフと実生活データセットにおける100以上のモジュールの組み合わせを比較します。
論文 参考訳(メタデータ) (2023-03-21T22:12:53Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
本論文は,3次元学習アーキテクチャを構築するための一般的なフレームワークを設計することによる課題に対処する。
提案手法はPointNetやDGCNNといった一般的なバックボーンに適用できる。
ModelNet40、ShapeNet、および実世界のデータセットであるScanObjectNNの実験では、この手法が効率、回転、精度の間の大きなトレードオフを達成することを示した。
論文 参考訳(メタデータ) (2022-09-13T12:12:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - Deep ensembles in bioimage segmentation [74.01883650587321]
本研究では,畳み込みニューラルネットワーク(CNN)のアンサンブルを提案する。
アンサンブル法では、多くの異なるモデルが訓練され、分類に使用され、アンサンブルは単一分類器の出力を集約する。
提案するアンサンブルは,DeepLabV3+とHarDNet環境を用いて,異なるバックボーンネットワークを組み合わせることで実現されている。
論文 参考訳(メタデータ) (2021-12-24T05:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。