A Deep Learning Sequential Decoder for Transient High-Density
Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer
Learning
- URL: http://arxiv.org/abs/2310.03752v1
- Date: Sat, 23 Sep 2023 05:32:33 GMT
- Title: A Deep Learning Sequential Decoder for Transient High-Density
Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer
Learning
- Authors: Golara Ahmadi Azar, Qin Hu, Melika Emami, Alyson Fletcher, Sundeep
Rangan, S. Farokh Atashzar
- Abstract summary: Hand gesture recognition (HGR) has gained significant attention due to the increasing use of AI-powered human-computers.
These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons.
These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons.
- Score: 11.170031300110315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hand gesture recognition (HGR) has gained significant attention due to the
increasing use of AI-powered human-computer interfaces that can interpret the
deep spatiotemporal dynamics of biosignals from the peripheral nervous system,
such as surface electromyography (sEMG). These interfaces have a range of
applications, including the control of extended reality, agile prosthetics, and
exoskeletons. However, the natural variability of sEMG among individuals has
led researchers to focus on subject-specific solutions. Deep learning methods,
which often have complex structures, are particularly data-hungry and can be
time-consuming to train, making them less practical for subject-specific
applications. In this paper, we propose and develop a generalizable, sequential
decoder of transient high-density sEMG (HD-sEMG) that achieves 73% average
accuracy on 65 gestures for partially-observed subjects through
subject-embedded transfer learning, leveraging pre-knowledge of HGR acquired
during pre-training. The use of transient HD-sEMG before gesture stabilization
allows us to predict gestures with the ultimate goal of counterbalancing system
control delays. The results show that the proposed generalized models
significantly outperform subject-specific approaches, especially when the
training data is limited, and there is a significant number of gesture classes.
By building on pre-knowledge and incorporating a multiplicative
subject-embedded structure, our method comparatively achieves more than 13%
average accuracy across partially observed subjects with minimal data
availability. This work highlights the potential of HD-sEMG and demonstrates
the benefits of modeling common patterns across users to reduce the need for
large amounts of data for new users, enhancing practicality.
Related papers
- An LSTM Feature Imitation Network for Hand Movement Recognition from sEMG Signals [2.632402517354116]
We propose utilizing a feature-imitating network (FIN) for closed-form temporal feature learning over a 300ms signal window on Ninapro DB2.
We then explore transfer learning capabilities by applying the pre-trained LSTM-FIN for tuning to a downstream hand movement recognition task.
arXiv Detail & Related papers (2024-05-23T21:45:15Z) - EMG subspace alignment and visualization for cross-subject hand gesture
classification [0.125828876338076]
The paper discusses and analyses the challenge of cross-subject generalization thanks to an original dataset containing the EMG signals of 14 human subjects during hand gestures.
The experimental results show that, though an accurate generalization based on pooling multiple subjects is hardly achievable, it is possible to improve the cross-subject estimation by identifying a robust low-dimensional subspace for multiple subjects and aligning it to a target subject.
arXiv Detail & Related papers (2023-12-18T14:32:29Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - ViT-HGR: Vision Transformer-based Hand Gesture Recognition from High
Density Surface EMG Signals [14.419091034872682]
We investigate and design a Vision Transformer (ViT) based architecture to perform hand gesture recognition from High Density (HD-sEMG) signals.
The proposed ViT-HGR framework can overcome the training time problems and can accurately classify a large number of hand gestures from scratch.
Our experiments with 64-sample (31.25 ms) window size yield average test accuracy of 84.62 +/- 3.07%, where only 78, 210 number of parameters is utilized.
arXiv Detail & Related papers (2022-01-25T02:42:50Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Transfer Learning for sEMG-based Hand Gesture Classification using Deep
Learning in a Master-Slave Architecture [0.0]
The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels.
Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach.
arXiv Detail & Related papers (2020-04-27T01:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.