Integrating Audio-Visual Features for Multimodal Deepfake Detection
- URL: http://arxiv.org/abs/2310.03827v1
- Date: Thu, 5 Oct 2023 18:19:56 GMT
- Title: Integrating Audio-Visual Features for Multimodal Deepfake Detection
- Authors: Sneha Muppalla, Shan Jia, Siwei Lyu
- Abstract summary: Deepfakes are AI-generated media in which an image or video has been digitally modified.
This paper proposes an audio-visual-based method for deepfake detection, which integrates fine-grained deepfake identification with binary classification.
- Score: 33.51027054306748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfakes are AI-generated media in which an image or video has been
digitally modified. The advancements made in deepfake technology have led to
privacy and security issues. Most deepfake detection techniques rely on the
detection of a single modality. Existing methods for audio-visual detection do
not always surpass that of the analysis based on single modalities. Therefore,
this paper proposes an audio-visual-based method for deepfake detection, which
integrates fine-grained deepfake identification with binary classification. We
categorize the samples into four types by combining labels specific to each
single modality. This method enhances the detection under intra-domain and
cross-domain testing.
Related papers
- Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity.
Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat.
We propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection.
arXiv Detail & Related papers (2024-08-02T18:45:01Z) - A Multi-Stream Fusion Approach with One-Class Learning for Audio-Visual Deepfake Detection [17.285669984798975]
This paper addresses the challenge of developing a robust audio-visual deepfake detection model.
New generation algorithms are continually emerging, and these algorithms are not encountered during the development of detection methods.
We propose a multi-stream fusion approach with one-class learning as a representation-level regularization technique.
arXiv Detail & Related papers (2024-06-20T10:33:15Z) - DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
arXiv Detail & Related papers (2024-06-19T12:35:02Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
The recent proliferation of hyper-realistic deepfake videos has drawn attention to the threat of audio and visual forgeries.
Most previous work on detecting AI-generated fake videos only utilize visual modality or audio modality.
We propose an Audio-Visual Transformer-based Ensemble Network (AVTENet) framework that considers both acoustic manipulation and visual manipulation.
arXiv Detail & Related papers (2023-10-19T19:01:26Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
Facial forgery by deepfakes has caused major security risks and raised severe societal concerns.
We formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it.
Our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection.
arXiv Detail & Related papers (2023-10-10T21:30:05Z) - MIS-AVoiDD: Modality Invariant and Specific Representation for
Audio-Visual Deepfake Detection [4.659427498118277]
A novel kind of deepfakes has emerged with either audio or visual modalities manipulated.
Existing multimodal deepfake detectors are often based on the fusion of the audio and visual streams from the video.
In this paper, we tackle the problem at the representation level to aid the fusion of audio and visual streams for multimodal deepfake detection.
arXiv Detail & Related papers (2023-10-03T17:43:24Z) - DF-TransFusion: Multimodal Deepfake Detection via Lip-Audio
Cross-Attention and Facial Self-Attention [13.671150394943684]
We present a novel multi-modal audio-video framework designed to concurrently process audio and video inputs for deepfake detection tasks.
Our model capitalizes on lip synchronization with input audio through a cross-attention mechanism while extracting visual cues via a fine-tuned VGG-16 network.
arXiv Detail & Related papers (2023-09-12T18:37:05Z) - Audio-Visual Person-of-Interest DeepFake Detection [77.04789677645682]
The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world.
We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity.
Our method can detect both single-modality (audio-only, video-only) and multi-modality (audio-video) attacks, and is robust to low-quality or corrupted videos.
arXiv Detail & Related papers (2022-04-06T20:51:40Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Multi-attentional Deepfake Detection [79.80308897734491]
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns.
We propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps.
arXiv Detail & Related papers (2021-03-03T13:56:14Z) - Emotions Don't Lie: An Audio-Visual Deepfake Detection Method Using
Affective Cues [75.1731999380562]
We present a learning-based method for detecting real and fake deepfake multimedia content.
We extract and analyze the similarity between the two audio and visual modalities from within the same video.
We compare our approach with several SOTA deepfake detection methods and report per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets.
arXiv Detail & Related papers (2020-03-14T22:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.