Multitask Learning for Time Series Data with 2D Convolution
- URL: http://arxiv.org/abs/2310.03925v2
- Date: Tue, 10 Oct 2023 05:17:31 GMT
- Title: Multitask Learning for Time Series Data with 2D Convolution
- Authors: Chin-Chia Michael Yeh, Xin Dai, Yan Zheng, Junpeng Wang, Huiyuan Chen,
Yujie Fan, Audrey Der, Zhongfang Zhuang, Liang Wang, Wei Zhang
- Abstract summary: Multitask learning (MTL) aims to develop a unified model that can handle a set of closely related tasks simultaneously.
In this paper, we investigate the application of MTL to the time series classification problem.
We show that when we integrate the state-of-the-art 1D convolution-based TSC model with MTL, the performance of the TSC model actually deteriorates.
- Score: 32.72419542473646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multitask learning (MTL) aims to develop a unified model that can handle a
set of closely related tasks simultaneously. By optimizing the model across
multiple tasks, MTL generally surpasses its non-MTL counterparts in terms of
generalizability. Although MTL has been extensively researched in various
domains such as computer vision, natural language processing, and
recommendation systems, its application to time series data has received
limited attention. In this paper, we investigate the application of MTL to the
time series classification (TSC) problem. However, when we integrate the
state-of-the-art 1D convolution-based TSC model with MTL, the performance of
the TSC model actually deteriorates. By comparing the 1D convolution-based
models with the Dynamic Time Warping (DTW) distance function, it appears that
the underwhelming results stem from the limited expressive power of the 1D
convolutional layers. To overcome this challenge, we propose a novel design for
a 2D convolution-based model that enhances the model's expressiveness.
Leveraging this advantage, our proposed method outperforms competing approaches
on both the UCR Archive and an industrial transaction TSC dataset.
Related papers
- SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery [54.866490321241905]
Model merging-based multitask learning (MTL) offers a promising approach for performing MTL by merging multiple expert models.
In this paper, we examine the merged model's representation distribution and uncover a critical issue of "representation bias"
This bias arises from a significant distribution gap between the representations of the merged and expert models, leading to the suboptimal performance of the merged MTL model.
arXiv Detail & Related papers (2024-10-18T11:49:40Z) - Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models [5.37935922811333]
State Space Models (SSMs) are classical approaches for univariate time series modeling.
We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns.
Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks.
arXiv Detail & Related papers (2024-06-06T17:58:09Z) - Representation Surgery for Multi-Task Model Merging [57.63643005215592]
Multi-task learning (MTL) compresses the information from multiple tasks into a unified backbone to improve computational efficiency and generalization.
Recent work directly merges multiple independently trained models to perform MTL instead of collecting their raw data for joint training.
By visualizing the representation distribution of existing model merging schemes, we find that the merged model often suffers from the dilemma of representation bias.
arXiv Detail & Related papers (2024-02-05T03:39:39Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - Multi-Task Recommendations with Reinforcement Learning [20.587553899753903]
Multi-task Learning (MTL) has yielded immense success in Recommender System (RS) applications.
This paper proposes a Reinforcement Learning (RL) enhanced MTL framework, namely RMTL, to combine the losses of different recommendation tasks using dynamic weights.
Experiments on two real-world public datasets demonstrate the effectiveness of RMTL with a higher AUC against state-of-the-art MTL-based recommendation models.
arXiv Detail & Related papers (2023-02-07T09:11:17Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - End-to-End Automatic Speech Recognition with Deep Mutual Learning [29.925641799136663]
This paper is the first to apply deep mutual learning to end-to-end ASR models.
In DML, multiple models are trained simultaneously and collaboratively by mimicking each other throughout the training process.
We demonstrate that DML improves the ASR performance of both modeling setups compared with conventional learning methods.
arXiv Detail & Related papers (2021-02-16T13:52:06Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.