Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
- URL: http://arxiv.org/abs/2406.04320v1
- Date: Thu, 6 Jun 2024 17:58:09 GMT
- Title: Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
- Authors: Ali Behrouz, Michele Santacatterina, Ramin Zabih,
- Abstract summary: State Space Models (SSMs) are classical approaches for univariate time series modeling.
We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns.
Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks.
- Score: 5.37935922811333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare to financial markets. Traditional State Space Models (SSMs) are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions, and/or are input-independent. We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns. To improve the efficiency of complex 2D recurrence, we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and short-term time series forecasting, and time series anomaly detection.
Related papers
- Ab-Initio Approach to Many-Body Quantum Spin Dynamics [0.0]
We employ the multilayer multiconfiguration time-dependent Hartree framework to simulate the many-body spin dynamics of the Heisenberg model.
We show that ML-MCTDH accurately captures the time evolution of one- and two-body observables in both one- and two-dimensional lattices.
Our results indicate that the multilayer structure of ML-MCTDH is a promising numerical framework for handling the dynamics of generic many-body spin systems.
arXiv Detail & Related papers (2024-11-20T10:42:35Z) - Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
We propose a novel Adaptive Multi-Scale Decomposition (AMD) framework for time series forecasting (TSF)
Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block.
Our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration.
arXiv Detail & Related papers (2024-06-06T05:27:33Z) - Time-SSM: Simplifying and Unifying State Space Models for Time Series Forecasting [22.84798547604491]
State Space Models (SSMs) approximate continuous systems using a set of basis functions and discretize them to handle input data.
This paper proposes a novel theoretical framework termed Dynamic Spectral Operator, offering more intuitive and general guidance on applying SSMs to time series data.
We introduce Time-SSM, a novel SSM-based foundation model with only one-seventh of the parameters compared to Mamba.
arXiv Detail & Related papers (2024-05-25T17:42:40Z) - Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning [11.19088022423885]
We propose a novel MoST learning framework via Self-Supervised Learning, namely MoSSL.
Results on two real-world MoST datasets verify the superiority of our approach compared with the state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-06T08:24:06Z) - CATS: Enhancing Multivariate Time Series Forecasting by Constructing
Auxiliary Time Series as Exogenous Variables [9.95711569148527]
We introduce a method to Construct Auxiliary Time Series (CATS) that functions like a 2D temporal-contextual attention mechanism.
Even with a basic 2-layer as core predictor, CATS achieves state-of-the-art, significantly reducing complexity and parameters compared to previous multivariate models.
arXiv Detail & Related papers (2024-03-04T01:52:40Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.